Let Φ be a **CTL** formula and φ an **LTL** formula.

Let Φ be a **CTL** formula and φ an **LTL** formula.

Let Φ be a **CTL** formula and φ an **LTL** formula.

e.g.,	CTL formula Φ	LTL formula $arphi$	
	а	а	$a \ b \in \Delta P$
	∀⊜a	Oa	
	∀(a U b)	a U <i>b</i>	

LTL formula $arphi$		
а		
Oa		
a U <i>b</i>		
⊘ a		

CTL formula Φ	LTL formula $arphi$		
а	а		
∀⊜a	Oa		
∀(a∪b)	<i>a</i> U <i>b</i>		
∀□a	$\Box a$		
∀≬a	⊘ a		
∀(a ₩ b)	aWb		

CTL formula Φ	LTL formula $arphi$		
а	а		
∀⊜a	Oa		
∀(a∪b)	a U <i>b</i>		
∀□a	□a		
∀≬a	⊘ a		
∀(a ₩ b)	aWb		
$\forall \Box \forall \diamond a$	□◊a		

CTL formula Φ	LTL formula $arphi$			
а	а			
∀⊜a)a			
∀(a∪b)	a U <i>b</i>			
∀□a				
∀≬a	⊘ a			
∀(a ₩ b)	aWb			
$\forall \Box \forall \diamond a$	□◊a			
infinitely often a				

CTL formula Φ	LTL formula $arphi$	_			
а	а	-			
∀⊜a	Oa				
∀(a U b)	a U <i>b</i>				
∀□a	□a				
∀≬a	⊘ a				
∀(a ₩ b)	aWb				
VDV\$a_	ຼ⊡◊a	but:	∀◊∀□₽	≢	⊘□ a
infinitely often a					

COMPARISON4.2-2

The CTL formula $\forall \Diamond \forall \Box a$

JOMPARISON4.2=2

$s \models \forall \Diamond \forall \Box a$ iff on each path π from sthere is a state t with $t \models \forall \Box a$

$\Diamond \Box a \not\equiv \forall \Diamond \forall \Box a$

To prove that

$\forall \Diamond \forall \Box_a \not\equiv \Diamond \Box_a$

we provide an example for a TS ${\cal T}$ s.t.

$\mathcal{T} \models_{\mathsf{LTL}} \Diamond \Box_{\mathbf{a}}$ $\mathcal{T} \not\models_{\mathsf{CTL}} \forall \Diamond \forall \Box_{\mathbf{a}}$

COMPARISON4.2-3

transition system ${\mathcal T}$

COMPARISON4.2-3

transition system ${\mathcal T}$

 $\mathcal{T}\models_{\mathsf{LTL}}\Diamond\square_{\textit{a}}$

transition system ${m {\cal T}}$

- $\mathcal{T}\models_{\mathsf{LTL}}\Diamond\square a$
- $\mathcal{T} \not\models_{\mathsf{CTL}} \forall \Diamond \forall \Box_a$

computation tree

transition system ${m {\cal T}}$

- $\mathcal{T}\models_{\mathsf{LTL}}\Diamond\square_{\textit{a}}$
- $\mathcal{T} \not\models_{\mathsf{CTL}} \forall \Diamond \forall \Box a$ $Sat(\forall \Box a) = \{ \bullet \}$

computation tree

From CTL to LTL, if possible

23/138

- either there is **no** equivalent LTL formula
- or . . .

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the **LTL** formula obtained from Φ by removing of all path quantifiers \exists and \forall

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the **LTL** formula obtained from Φ by removing of all path quantifiers \exists and \forall

$$\Phi = \forall \Diamond \forall \Box a$$

$$\downarrow$$

$$\varphi = \Diamond \Box a \neq \Phi$$

• either there is **no** equivalent LTL formula

• or
$$\Phi \equiv \varphi$$

where φ is the **LTL** formula obtained from Φ by removing of all path quantifiers \exists and \forall

without proof

$$\Phi = \forall \Diamond \forall \Box a$$

$$\downarrow$$

$$\varphi = \Diamond \Box a \neq \Phi$$

hence: there is no LTL formula equivalent to Φ

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the **LTL** formula obtained from Φ by removing of all path quantifiers \exists and \forall

$$\Phi = \forall \Box \forall \Diamond a$$

$$\downarrow$$

$$\varphi = \Box \Diamond a$$

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the **LTL** formula obtained from Φ by removing of all path quantifiers \exists and \forall

without proof

a"

$$\Phi = \forall \Box \forall \Diamond a$$

$$\downarrow$$

$$\varphi = \Box \Diamond a \equiv \Phi$$
 "infinitely often

- either there is **no** equivalent LTL formula
- or $\Phi \equiv \varphi$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

without proof

 $\Phi = \forall \Diamond (a \land \forall \bigcirc a)$

• either there is **no** equivalent LTL formula

• or
$$\Phi \equiv \varphi$$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

$$\Phi = \forall \Diamond (a \land \forall \bigcirc a)$$

$$\downarrow \varphi = \Diamond (a \land \bigcirc a)$$

• either there is **no** equivalent LTL formula

• or
$$\Phi \equiv \varphi$$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

• either there is **no** equivalent LTL formula

• or
$$\Phi \equiv \varphi$$

where φ is the LTL formula obtained from Φ by removing of all path quantifiers \exists and \forall

without proof

$$\Phi = \forall \Diamond (a \land \forall \bigcirc a) \\ \downarrow \\ \varphi = \Diamond (a \land \bigcirc a) \not\equiv \Phi$$

hence: there is no LTL formula equivalent to Φ

$\Diamond(a \land \bigcirc a) \not\equiv \forall \Diamond(a \land \forall \bigcirc a)$
$\Diamond (a \land \bigcirc a) \not\equiv \forall \Diamond (a \land \forall \bigcirc a)$

To prove that

 $\Diamond (a \land \bigcirc a) \not\equiv \forall \Diamond (a \land \forall \bigcirc a)$

we provide an example for a TS \mathcal{T} s.t.

 $\mathcal{T} \models_{\mathsf{LTL}} \Diamond (a \land \bigcirc a)$ $\mathcal{T} \not\models_{\mathsf{CTL}} \forall \Diamond (a \land \forall \bigcirc a)$

 $\Diamond (a \land \bigcirc a) \not\equiv \forall \Diamond (a \land \forall \bigcirc a)$

*S*0 **S**3 S₁ **S**4 **S**2

 $= \emptyset$ $\mathbf{a} = \{\mathbf{a}\}$

 $\Diamond(a \land \bigcirc a) \not\equiv \forall \Diamond(a \land \forall \bigcirc a)$

50 51 52 54

 $\mathcal{T}\models_{\mathsf{LTL}} \Diamond (a \land \bigcirc a)$

 $= \emptyset$ $= \{a\}$

COMPARISON4.2-4A

 $(a \land \bigcirc a) \not\equiv \forall (a \land \forall \bigcirc a)$

COMPARISON4.2-4A

$$\Diamond(a \land \bigcirc a) \not\equiv \forall \Diamond(a \land \forall \bigcirc a)$$

1

$$T \models_{\text{LTL}} \Diamond (a \land \bigcirc a) \leftarrow \begin{bmatrix} trace(s_0 s_1 s_2^{\omega}) = \{a\} \{a\} \varnothing^{\omega} \\ trace(s_0 s_3 s_4^{\omega}) = \{a\} \varnothing \{a\}^{\omega} \end{bmatrix}$$

 $\mathcal{T} \not\models_{\mathsf{CTL}} \forall \Diamond (a \land \forall \bigcirc a)$

 $\Diamond(a \land \bigcirc a) \not\equiv \forall \Diamond(a \land \forall \bigcirc a)$

$$T \models_{\text{LTL}} \forall \Diamond (a \land \forall \bigcirc a) \leftarrow \begin{bmatrix} trace(s_0 s_1 s_2^{\omega}) = \{a\} \{a\} \varnothing^{\omega} \\ trace(s_0 s_3 s_4^{\omega}) = \{a\} \varnothing \{a\}^{\omega} \\ trace(s_0 s_3 s_4^{\omega}) = \{a\} \varnothing \{a\}^{\omega} \end{bmatrix}$$

COMPARISON4.2-4A

$$\Diamond(a \land \bigcirc a) \not\equiv \forall \Diamond(a \land \forall \bigcirc a)$$

$$T \models_{\text{LTL}} \forall \Diamond (a \land \forall \bigcirc a) \leftarrow \begin{bmatrix} \text{trace}(s_0 \, s_1 \, s_2^{\omega}) = \{a\} \{a\} \, \varnothing^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \varnothing \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{a\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{b\}^{\omega} \\ \text{trace}(s_0 \, s_3 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{b\}^{\omega} \\ \text{trace}(s_0 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{b\}^{\omega} \\ \text{trace}(s_0 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{b\}^{\omega} \\ \text{trace}(s_0 \, s_4^{\omega}) = \{a\} \, \emptyset \, \{b\}^{\omega} \\ \text{trace}(s_0 \, s_4^{\omega}) = \{b\}^{\omega} \\ \\{b\}^{\omega} \\ \text{trace}(s_0 \, s_4^{\omega}) = \{b\}^{\omega} \\ \\{b\}^{\omega} \\ \$$

COMPARISON4.2-4A

COMPARISON4.2-5

COMPARISON4.2-5

The expressive powers of LTL and CTL are incomparable

The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula

COMPARISON4.2-5

- The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

COMPARISON4.2-5

- The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

COMPARISON4.2-5

- The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

COMPARISON4.2-5

- The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

COMPARISON4.2-5

- The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

COMPARISON4.2-5C

- The CTL formulas ∀◊(a ∧ ∀○a), ∀◊∀□a and
 ∀□∃◊a have no equivalent LTL formula
- The LTL formula ◊□a has no equivalent CTL formula

CTL properties that are not LTL-definable

```
The CTL formulas

\forall \Diamond (a \land \forall \bigcirc a)

\forall \Diamond \forall \Box a

\forall \Box \exists \Diamond a

have no equivalent LTL formula
```

COMPARISON4.2-5A

CTL properties that are not LTL-definable

```
The CTL formulas

\forall \Diamond (a \land \forall \bigcirc a)

\forall \Diamond \forall \Box a

\forall \Box \exists \Diamond a

have no equivalent LTL formula
```

Proof uses the fact that for each **CTL** formula Φ :

- either there is **no** equivalent **LTL** formula
- or Φ ≡ φ where φ is the LTL formula obtained from Φ by removing of all path quantifiers

COMPARISON4.2-5A

CTL properties that are not LTL-definable

Proof uses the fact that for each **CTL** formula Φ :

- either there is **no** equivalent **LTL** formula
- or Φ ≡ φ where φ is the LTL formula obtained from Φ by removing of all path quantifiers

```
The CTL formulas

\forall \diamond (a \land \forall \bigcirc a)

\forall \diamond \forall \Box a

\forall \Box \exists \diamond a \leftarrow alternative (direct) proof

have no equivalent LTL formula
```

Proof uses the fact that for each **CTL** formula Φ :

- either there is **no** equivalent **LTL** formula
- or Φ ≡ φ where φ is the LTL formula obtained from Φ by removing of all path quantifiers

COMPARISON4.2-5A

There is no LTL formula equivalent to $\forall \Box \exists \Diamond a$ COMPARISON 4.2-5D

There is no LTL formula equivalent to $\forall \Box \exists \Diamond a$ COMPARISON 4.2-5D

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$

There is no LTL formula equivalent to $\forall \Box \exists \Diamond a$ COMPARISON 4.2-5D

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$

consider the following TS T_1 :

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$
$$\mathcal{T}_1 \models \forall \Box \exists \Diamond a$$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$\begin{aligned} Sat(\exists \Diamond a) &= \{s, t\} \\ \mathcal{T}_1 &\models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi \end{aligned}$$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$\begin{aligned} Sat(\exists \Diamond a) &= \{s, t\} \\ \mathcal{T}_1 &\models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi \end{aligned}$$

consider the following TS T_2 :

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$\begin{aligned} & \textit{Sat}(\exists \Diamond a) = \{s, t\} \\ & \mathcal{T}_1 \models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi \end{aligned}$$

consider the following TS T_2 :

 $\mathit{Traces}(\mathcal{T}_2) = \{ arnothing ^\omega \}$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$
$$\mathcal{T}_1 \models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi$$

consider the following TS T_2 :

 $\mathit{Traces}(\mathcal{T}_2) = \{ \varnothing^\omega \} \subseteq \mathit{Traces}(\mathcal{T}_1)$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$
$$\mathcal{T}_1 \models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi$$

consider the following TS T_2 :

 $\mathit{Traces}(\mathcal{T}_2) = \{ arnothing ^\omega \} \subseteq \mathit{Traces}(\mathcal{T}_1) \subseteq \mathit{Words}(arphi)$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$
$$\mathcal{T}_1 \models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi$$

consider the following TS T_2 :

 $\begin{array}{c} \varnothing \\ \hline \end{array} \\ Traces(\mathcal{T}_2) = \{ \varnothing^{\omega} \} \subseteq Traces(\mathcal{T}_1) \subseteq Words(\varphi) \\ \\ \text{Hence:} \quad \mathcal{T}_2 \models \varphi \end{array}$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$
$$\mathcal{T}_1 \models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi$$

consider the following TS T_2 :

 $\mathit{Traces}(\mathcal{T}_2) = \{ arnothing ^\omega \} \subseteq \mathit{Traces}(\mathcal{T}_1) \subseteq \mathit{Words}(arphi)$

Hence:
$$T_2 \models \varphi$$

 \implies $T_2 \models \forall \Box \exists \Diamond a$

suppose φ is an **LTL** formula s.t. $\varphi \equiv \forall \Box \exists \Diamond a$ consider the following TS \mathcal{T}_1 :

$$Sat(\exists \Diamond a) = \{s, t\}$$
$$\mathcal{T}_1 \models \forall \Box \exists \Diamond a \implies \mathcal{T}_1 \models \varphi$$

consider the following TS T_2 :

 $\mathit{Traces}(\mathcal{T}_2) = \{ arnothing ^\omega \} \subseteq \mathit{Traces}(\mathcal{T}_1) \subseteq \mathit{Words}(arphi)$

Hence:
$$T_2 \models \varphi$$

 $\implies \qquad \mathcal{T}_2 \models \forall \Box \exists \Diamond a \quad \text{contradiction } !!$

COMPARISON4.2-5E

The expressive powers of LTL and CTL are incomparable

The LTL formula $\square a$ has no equivalent CTL formula

COMPARISON4.2-5E

The expressive powers of LTL and CTL are incomparable

The LTL formula $\square a$ has no equivalent CTL formula

LTL		CTL
\□a	□◊a	

LTL formula ◊□*a*

comparison4.2-5b

LTL formula ◊□a

There is no **CTL** formula which is equivalent to the **LTL** formula $\square a$
There is no **CTL** formula which is equivalent to the **LTL** formula $\square a$

Proof (sketch): provide sequences $(\mathcal{T}_n)_{n\geq 0}$, $(\mathcal{T}'_n)_{n\geq 0}$ of transition systems such that for all $n \geq 0$:

- (1) $T_n \not\models \Diamond \Box a$
- (2) $T_n' \models \Diamond \Box a$

There is no **CTL** formula which is equivalent to the **LTL** formula $\square a$

Proof (sketch): provide sequences $(\mathcal{T}_n)_{n\geq 0}$, $(\mathcal{T}'_n)_{n\geq 0}$ of transition systems such that for all $n \geq 0$:

- (1) *T*_n ⊭ ◊□a
- (2) $T'_n \models \Diamond \Box a$
- (3) T_n and T'_n satisfy the same **CTL** formulas length $\leq n$

Comparison4.2-6

 $T_n \qquad S_n \qquad \emptyset$ $\{a\} \qquad t_n \qquad T'_{n-1}$

COMPARISON4.2-7

 $T_n \\ s_n \\ \emptyset \\ \{a\} \\ t_n \\ T'_{n-1}$

 $\mathcal{T}_n \not\models \Diamond \Box a$

 $\mathcal{T}'_{n} \models \Diamond \Box a$

For all **CTL** formulas
$$\Phi$$
 of length $|\Phi| \le n$:
 $s_n \models \Phi$ iff $s'_n \models \Phi$
 $t_n \models \Phi$ iff $t'_n \models \Phi$

Transition systems T_n and T'_n

For all **CTL** formulas
$$\Phi$$
 of length $|\Phi| \le n$:
 $s_n \models \Phi$ iff $s'_n \models \Phi$
 $t_n \models \Phi$ iff $t'_n \models \Phi$

Hence: \mathcal{T}_n and \mathcal{T}'_n fulfill the same **CTL** formulas of length $\leq n$

COMPARISON4.2-8

Does $\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$ hold ?

COMPARISON4.2-8

Does $\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$ hold ?

COMPARISON4.2-8

Does $\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$ hold ?

 $\bigcirc = \{a\}$ $) = \emptyset$

COMPARISON4.2-8

Does $\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$ hold ?

 $\mathcal{T} \not\models \Diamond (a \land \bigcirc a)$

COMPARISON4.2-8

Does
$$\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$$
 hold ?

answer: no.

note: $\pi = s_0 s_2 s_2 s_2 \ldots$ is a path in \mathcal{T} with

 $trace(\pi) = \{a\} \oslash \oslash \oslash \ldots \notin Words(\Diamond (a \land \bigcirc a))$

COMPARISON4.2-8

Does $\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$ hold ?

$$\mathcal{T} \not\models \Diamond (a \land \bigcirc a)$$
$$\mathcal{T} \not\models \forall \Diamond (a \land \exists \bigcirc a)$$

COMPARISON4.2-8

Does
$$\forall \Diamond (a \land \exists \bigcirc a) \equiv \Diamond (a \land \bigcirc a)$$
 hold ?

answer: no.

 $Sat(\exists \bigcirc a) = \{s_0, s_1\}$ $Sat(\forall \Diamond (a \land \exists \bigcirc a)) = \{s_0, s_1\}$

 $\mathcal{T} \models \Phi$ iff $Traces(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})$

$$\mathcal{T} \models \Phi$$
 iff $Traces(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})$

wrong.

$$\mathcal{T} \models \Phi$$
 iff $Traces(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})$

wrong. consider, e.g., an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\Diamond \Box a)$

$$\mathcal{T} \models \Phi$$
 iff $Traces(\mathcal{T}) \subseteq \mathcal{L}_{\omega}(\mathcal{A})$

wrong. consider, e.g., an NBA \mathcal{A} with $\mathcal{L}_{\omega}(\mathcal{A}) = Words(\Diamond \Box a)$

But there is no CTL formula Φ such that $\Phi \equiv \Diamond \Box a$

If
$$\Phi$$
 is **CTL** formula and φ an **LTL** formula such that $\Phi \equiv \varphi$ then $\neg \Phi \equiv \neg \varphi$

wrong.

wrong. E.g.,

$$\Phi = \forall \Box \forall \Diamond a, \quad \varphi = \Box \Diamond a$$

wrong. E.g.,

$$\Phi = \forall \Box \forall \Diamond a, \quad \varphi = \Box \Diamond a$$

wrong. E.g.,

$$\Phi = \forall \Box \forall \Diamond a, \quad \varphi = \Box \Diamond a$$

• $\Phi \equiv \varphi$

• there is no CTL formula that is equivalent to $\neg \varphi \equiv \Diamond \Box \neg a$

note that: $s \models \exists \Diamond a$

note that: $s \models \exists \Diamond a$

thus: $s s s \dots \models \Box \exists \Diamond a$

note that: $s \models \exists \Diamond a$

thus: $s s s \dots \models \Box \exists \Diamond a$

but there is no path where $\Box \Diamond a$ holds

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

wrong.

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

correct.

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

$$s \models \exists \Diamond \exists \Box a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Diamond \Box a$

correct. $\exists \Diamond \exists \Box a \equiv \neg \forall \Box \forall \Diamond \neg a$

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

$$s \models \exists \Diamond \exists \Box a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Diamond \Box a$

correct. $\exists \Diamond \exists \Box a \equiv \neg \forall \Box \forall \Diamond \neg a$ $s \models \exists \Diamond \exists \Box a$

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

$$s \models \exists \Diamond \exists \Box a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Diamond \Box a$

correct. $\exists \Diamond \exists \Box a \equiv \neg \forall \Box \forall \Diamond \neg a$ $s \models \exists \Diamond \exists \Box a \text{ iff } s \not\models \forall \Box \forall \Diamond \neg a$

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

$$s \models \exists \Diamond \exists \Box a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Diamond \Box a$

correct. $\exists \Diamond \exists \Box a \equiv \neg \forall \Box \forall \Diamond \neg a$ $s \models \exists \Diamond \exists \Box a \text{ iff } s \not\models \forall \Box \forall \Diamond \neg a$ iff $s \not\models \Box \Diamond \neg a$

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

$$s \models \exists \Diamond \exists \Box a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Diamond \Box a$

correct. $\exists \Diamond \exists \Box a \equiv \neg \forall \Box \forall \Diamond \neg a$ $s \models \exists \Diamond \exists \Box a \text{ iff } s \not\models \forall \Box \forall \Diamond \neg a$ $\text{iff } s \not\models \Box \Diamond \neg a \equiv \neg \Diamond \Box a$

$$s \models \exists \Box \exists \Diamond a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Box \Diamond a$

$$s \models \exists \Diamond \exists \Box a$$
 iff there is a path $\pi \in Paths(s)$ with $\pi \models \Diamond \Box a$

correct. $\exists \Diamond \exists \Box a \equiv \neg \forall \Box \forall \Diamond \neg a$ $s \models \exists \Diamond \exists \Box a \text{ iff } s \not\models \forall \Box \forall \Diamond \neg a$ $\text{iff } s \not\models \Box \Diamond \neg a \equiv \neg \Diamond \Box a$ $\text{iff there is a path } \pi \dots$

COMPARISON4.2-11

There is an **LTL** formula φ with $\varphi \equiv \neg \exists \Diamond \exists \Box_a$

correct

correct as $\neg \exists \Diamond \exists \Box_a \equiv \forall \Box \forall \Diamond \neg_a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

 $\mathcal{T} \not\models \neg \exists \Box a$ iff there is a path $\pi \in Paths(\mathcal{T})$ with $\pi \models \Box a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

 $\mathcal{T} \not\models \neg \exists \Box a \quad \text{iff there is a path } \pi \in \underline{Paths}(\mathcal{T}) \text{ with} \\ \pi \models \Box a$

correct

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

 $\mathcal{T} \not\models \neg \exists \Box a \quad \text{iff} \quad \text{there is a path } \pi \in \underline{Paths}(\mathcal{T}) \text{ with} \\ \pi \models \Box a$

correct $\mathcal{T} \not\models \neg \exists \Box a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

correct $\mathcal{T} \not\models \neg \exists \Box a$

iff there is an initial state s with $s \not\models \neg \exists \Box a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

$$\mathcal{T} \not\models \neg \exists \Box a \quad \text{iff} \quad \text{there is a path } \pi \in Paths(\mathcal{T}) \text{ with} \\ \pi \models \Box a$$

correct
$$\mathcal{T} \not\models \neg \exists \Box a$$

iff there is an initial state s with $s \not\models \neg \exists \Box a$

iff there is an initial state s with $s \models \exists \Box a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

$$\mathcal{T} \not\models \neg \exists \Box_a \quad \text{iff there is a path } \pi \in Paths(\mathcal{T}) \text{ with} \\ \pi \models \Box_a$$

correct
$$\mathcal{T} \not\models \neg \exists \Box_a$$

- iff there is an initial state s with $s \not\models \neg \exists \Box a$
- iff there is an initial state s with $s \models \exists \Box a$
- iff there is a path $\pi \in Paths(\mathcal{T})$ with $\pi \models \Box a$

correct as $\neg \exists \Diamond \exists \Box a \equiv \forall \Box \forall \Diamond \neg a \equiv \Box \Diamond \neg a$

$$\mathcal{T} \not\models \neg \exists \varphi$$
 iff there is a path $\pi \in Paths(\mathcal{T})$ with $\pi \models \varphi$

correct
$$\mathcal{T} \not\models \neg \exists \varphi$$

iff there is an initial state **s** with $\mathbf{s} \not\models \neg \exists \varphi$

iff there is an initial state **s** with $\mathbf{s} \models \exists \varphi$

iff there is a path $\pi \in Paths(\mathcal{T})$ with $\pi \models \varphi$

$$\mathcal{T} \not\models \neg \forall \Box a \quad \text{iff for all paths } \pi \in Paths(\mathcal{T}):$$
$$\pi \models \Box a$$

$$\mathcal{T} \not\models \neg \forall \Box a \quad \text{iff for all paths } \pi \in \underline{Paths}(\mathcal{T}):$$
$$\pi \models \Box a$$

Correct or wrong?

$$\mathcal{T} \not\models \neg \forall \Box a \quad \text{iff for all paths } \pi \in \underline{Paths}(\mathcal{T}):$$
$$\pi \models \Box a$$

wrong.

$$\mathcal{T} \not\models \neg \forall \Box a$$

$$\mathcal{T} \not\models \neg \forall \Box a \quad \text{iff for all paths } \pi \in Paths(\mathcal{T}):$$
$$\pi \models \Box a$$

$$\mathcal{T} \not\models \neg \forall \Box_{a}$$

iff there is an initial state s with $s \not\models \neg \forall \Box a$

$$\mathcal{T} \not\models \neg \forall \Box a \quad \text{iff for all paths } \pi \in Paths(\mathcal{T}):$$
$$\pi \models \Box a$$

$$\mathcal{T} \not\models \neg \forall \Box_a$$

iff there is an initial state **s** with $s \not\models \neg \forall \Box a$

iff there is an initial state s with $s \models \forall \Box a$

$$\mathcal{T} \not\models \neg \forall \Box a \quad \text{iff for all paths } \pi \in Paths(\mathcal{T}):$$
$$\pi \models \Box a$$

$$\mathcal{T} \not\models \neg \forall \Box_a$$

- iff there is an initial state s with $s \not\models \neg \forall \Box a$
- iff there is an initial state *s* with $s \models \forall \Box a$

but there might be another initial state ts.t. $t \not\models \forall \Box a$

wrong.

wrong.

wrong.

 \mathcal{T}_1 and \mathcal{T}_2 are trace equivalent

wrong.

consider the CTL formula $\Phi = \exists \bigcirc a \land \exists \bigcirc b$ $\mathcal{T}_1 \not\models \Phi$ $\mathcal{T}_2 \models \Phi$

 T_1 and T_2 are trace equivalent