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Equalities and Uninterpreted Functions



@ Introduction to Equality Logic
@ Definition, complexity

@ Reducing uninterpreted functions to Equality Logic
© Using uninterpreted functions in proofs

@ Simplifications
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Equality Logic

@ A Boolean combination of Equalities and Propositions
T :{L‘Q/\(LEQ 21‘3\/—|(({L‘1 :333) ANbA xq :2))
e We always push negations inside (NNF):

.731:562/\(5(,‘221‘3\/((x1751E3)/\—\b/\I1752))
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Syntax of Equality Logic

formula :  formula V formula
| —formula
| atom
atom : term-variable = term-variable

| term-variable = constant
|  Boolean-variable

@ The term-variables are defined over some (possible infinite) domain.
The constants are from the same domain.

@ The set of Boolean variables is always separate from the set of term
variables
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ressiveness and complexity

@ Allows more natural description of systems, although technically it is
as expressible as Propositional Logic.

@ Obviously NP-hard.

@ In fact, it is in NP, and hence NP-complete, for reasons we shall see
later.
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Equality logic with uninterpreted functions

formula :  formula V formula
| —formula
| atom

atom : term = term

|  Boolean-variable

term :  term-variable
| function (list of terms)

The term-variables are defined over some (possible infinite) domain.
Constants are functions with an empty list of terms.
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Uninterpreted Functions

@ Every function is a mapping from a domain to a range.

@ Example: the '+’ function over the naturals N is a mapping from
(N x N) to N.
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Uninterpreted Functions

Suppose we replace '+’ by an uninterpreted binary function f(a,b)

Example:
Ty +x9 =3+ x4 isreplaced by f(x1,22) = f(x3,24)

We lost the 'semantics’ of '+, as f can represent any binary function.

'Loosing the semantics’ means that f is not restricted by any axioms
or rules of inference.

But f is still a function!
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Uninterpreted Functions

The most general axiom for any function is functional consistency.

Example: if x =y, then f(x) = f(y) for any function f.

@ Functional consistency axiom schema:
/ / / /
rr=21AN... AN =1z, = f(r1,...,2) = f(27,...,2},)

@ Sometimes, functional consistency is all that is needed for a proof.
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xample: Circuit Transformations

—
—IRY Latch
@ Circuits consist of
combinational gates and I— Combi-
latches (registers) national
part
L
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Example: Circuit Transformations

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures

—
—=> R, Latch
@ Circuits consist of
combinational gates and I— Combi-
latches (registers) national
part
L

@ The combinational gates
can be modeled using
functions

@ The latches can be
modeled with variables
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Example: Circuit Transformations
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lm < in: a primary input of the circuit
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lm < in: a primary input of the circuit

‘ F,G,H, K, D: some functions

L
over bit-vectors
G |
° Lq,..., Ls: latches (registers)
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lm < in: a primary input of the circuit

P L ‘ F,G,H, K, D: some functions
over bit-vectors

Lq,..., Ls: latches (registers)

< D C': a predicate over bit-vectors

1 0 a multiplexer (case-split)
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Example: Circuit Transformations
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@ A pipeline processes data in stages

@ Data is processed in parallel — as in an

assembly line

@ Formal model:

Ly =
Lo
Ls
Ly
Ly =

Decision Procedures

Version 1.0, 2007

13 / 47



Example: Circuit Transformations

D. Kroening, O. Strichman (ETH/Technion)

@ A pipeline processes data in stages

@ Data is processed in parallel — as in an

assembly line

@ Formal model:

Ly =
Lo
Ls
Ly
Ly =

Decision Procedures

Version 1.0, 2007

13 / 47



Example: Circuit Transformations
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Example: Circuit Transformations

@ A pipeline processes data in stages

@ Data is processed in parallel — as in an

assembly line

@ Formal model:
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Lo
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Ly
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Example: Circuit Transformations

in

@ The maximum clock frequency depends
on the longest path between two latches

CH @ Note that the output of g is used as input
to k

@ We want to speed up the design by
> L ‘ L ‘ L ‘ postponing k to the third stage
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Example: Circuit Transformations

in

The maximum clock frequency depends
on the longest path between two latches

Note that the output of g is used as input
to k

We want to speed up the design by
postponing k to the third stage

Also note that the circuit only uses one of
L3 or Ly, never both

We can remove one of the latches
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Example: Circuit Transformations
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Example: Circuit Transformations

S —
2 Z i(lg(Ll)) Ly = c(LY)
Li = h(Ly) Ly = o(Ly)7g(Lh) : h(L))

Ly = Ly?k(Ly) : 1(L3)
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Example: Circuit Transformations

S —
2 Z i(lg(Ll)) Ly = c(LY)
Li = h(Ly) Ly = o(Ly)7g(Lh) : h(L))

IL = IL2k(L) : (L)

Ly = L

@ Equivalence in this case holds regardless of the actual functions

@ Conclusion: can be decided using Equality Logic and Uninterpreted
Functions
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Transforming UF's to Equality Logic using Ackermann’s reduction

o Given: a formula Y% with uninterpreted functions

e For each function in V%"

1. Number function instances . py(Fy(z)) =0
(from the inside out)
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Transforming UF's to Equality Logic using Ackermann’s reduction

o Given: a formula Y% with uninterpreted functions

e For each function in V%"

f
1. Number function instances FQ(Fl(x)) -0
(from the inside out) Hf,—/
2

2. Replace each function in- _____ fa=0
stance with a new variable
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Transforming UF's to Equality Logic using Ackermann’s reduction

o Given: a formula Y% with uninterpreted functions

e For each function in V%

f
1. Number function instances FQ(F1(1‘)) -0
(from the inside out) Hf,—/
2

2. Replace each function in- _____ fa=0
stance with a new variable

3. Add functional consistency . ((z=f1) — (fo = f1))
constraint to V%" for every — fo=0
pair of instances of the same
function.
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Ackermann’s reduction: Example

Suppose we want to check
T1 # T V F(l‘l) = F(l’g) V F(l’l) 75 F(:L’g)
for validity.

@ First number the function instances:

T 75 9 V F1($1) = FQ(SCQ) \Y Fl(l'l) 75 Fg(l‘g)
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Ackermann’s reduction: Example

Suppose we want to check
T1 # T V F(l‘l) = F(l’g) V F(l’l) 75 F(:L’g)
for validity.

@ First number the function instances:

T 75 9 V F1($1) = FQ(SCQ) \Y Fl(l'l) 75 Fg(l‘g)

@ Replace each function with a new variable:

T F#x2V fi=foV fi#f3
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Ackermann’s reduction: Example

Suppose we want to check
T1 # T V F(l‘l) = F(l’g) V F(l’l) 75 F(:L’g)
for validity.

@ First number the function instances:
x1 # x9V Fi(x1) = Fa(xa) V Fi(x1) # F3(x3)
@ Replace each function with a new variable:
T F#x2V fi=foV fi#f3
© Add functional consistency constraints:

(1 =22 = f1=f2) A
(mr=23—=fi=f3) N | —
(22 = 23 — f2 = f3)

((x1 #z2) V(fi=fo)V(fi # f3)
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Transforming UF's to Equality Logic using Bryant’s reduction

e Given: a formula Y% with uninterpreted functions

e For each function in V%"

1. Number function instances - Fi(a) = Fy(b)
(from the inside out)
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Transforming UF's to Equality Logic using Bryant’s reduction

e Given: a formula Y% with uninterpreted functions

e For each function in V%"

1. Number function instances - Fi(a) = Fy(b)
(from the inside out)

2. Replace each function instance - F* = Fy
F; with an expression F*

Version 1.0, 2007

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures



Transforming UF's to Equality Logic using Bryant’s reduction

e Given: a formula Y% with uninterpreted functions

e For each function in V%"

1. Number function instances - Fi(a) = Fy(b)
(from the inside out)

2. Replace each function instance - F* = Fy
F; with an expression F*

case x1==m; :f1
To=1x; :fo
* . . case a=o=b:
E = : ., fl — ( fl )
true : fo
Tij—1 = Tyt fi71
true  fi
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Example of Bryant’s reduction

@ Original formula:
a=b — F(G(a) = F(G(D))
@ Number the instances:

a=b — Fl(Gl(a) = FQ(GQ(b))

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 20 / 47



Example of Bryant’s reduction

@ Original formula:
a=b— F(G(a) = F(G(D))
@ Number the instances:
a=0b — Fi(Gi(a) = F5(G2(b))
@ Replace each function application with an expression:

a=b— Ff =F;

where
Ff = h
Jo case G7 =G5 :fi
2 true : fa
1 = @
Gy - < case ftzr;b fgl >
t 92
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Using uninterpreted functions in proofs

@ Uninterpreted functions give us the ability to represent an abstract
view of functions.

@ It over-approximates the concrete system.
141 =1 is a contradiction
But
F(1,1) =1 is satisfiable!
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Using uninterpreted functions in proofs

@ Uninterpreted functions give us the ability to represent an abstract
view of functions.
@ It over-approximates the concrete system.
141 =1 is a contradiction
But
F(1,1) =1 is satisfiable!
@ Conclusion: unless we are careful, we can give wrong answers, and
this way, loose soundness.
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Using uninterpreted functions in proofs

@ In general, a sound but incomplete method is more useful than an
unsound but complete method.

@ A sound but incomplete algorithm for deciding a formula with
uninterpreted functions V%"
@ Transform it into Equality Logic formula ¢

QIf <pE is unsatisfiable, return 'Unsatisfiable’
© Else return 'Don’t know'
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Using uninterpreted functions in proofs

@ Question #1: is this useful?
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Using uninterpreted functions in proofs

@ Question #1: is this useful?

@ Question #2: can it be made complete in some cases?
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Using uninterpreted functions in proofs

@ Question #1: is this useful?

@ Question #2: can it be made complete in some cases?

@ When the abstract view is sufficient for the proof, it enables (or at
least simplifies) a mechanical proof.
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Using uninterpreted functions in proofs

@ Question #1: is this useful?

@ Question #2: can it be made complete in some cases?

@ When the abstract view is sufficient for the proof, it enables (or at
least simplifies) a mechanical proof.

@ So when is the abstract view sufficient?
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Using uninterpreted functions in proofs

@ (common) Proving equivalence between:

o Two versions of a hardware design (one with and one without a

pipeline)
o Source and target of a compiler (" Translation Validation™)
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Using uninterpreted functions in proofs

@ (common) Proving equivalence between:

o Two versions of a hardware design (one with and one without a

pipeline)
o Source and target of a compiler (" Translation Validation™)

o (rare) Proving properties that do not rely on the exact functionality of
some of the functions
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xample: Translation Validation

@ Assume the source program has the statement
z=(z1+y1) - (v2 + y2);
which the compiler turned into:
ulr = 21+ Y1;

U = T2 + Y23
2= Uy - ug;
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Example: Translation Validation

@ Assume the source program has the statement
z=(z1+y1) - (22 + y2);
which the compiler turned into:
ulr = 21+ Y1;
Uz = T2 + Y23
Z = uq - ug;
@ We need to prove that:

(v =z14+1y1 AN we=mza4+yas A z=1up-uz)
— (2= (21+y1) (22 +y2))
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Example: Translation Validation

o Claim: oV is valid

@ We will prove this by reducing it to an Equality Logic formula
oE = [(SElZfﬂszl:yz — fi=f2) /\]
(w1 =finue=fo — g1 =go)
(m=fi Nua=fo N z2=g1) — 2z2=g)
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Uninterpreted functions: usability

@ Good: each function on the left can be mapped to a function on the
right with equivalent arguments
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Uninterpreted functions: usability

@ Good: each function on the left can be mapped to a function on the
right with equivalent arguments

@ Bad: almost all other cases

o Example:

Left Right
T+ 2z
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Uninterpreted functions: usability

@ This is easy to prove:

(x1 =22 AN1p =1y2) — (T1 +y1 = T2 + Y2)
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Uninterpreted functions: usability

@ This is easy to prove:
(1 =22 A1 = y2) — (x1 +y1 = 22+ Y2)
@ This requires commutativity:

(1 =22 A1 =1y2) — (21 + Y1 = Y2 + 22)
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Uninterpreted functions: usability

@ This is easy to prove:

(z1 =22 Ny = 42) — (21 + 51 = 22 +12)
@ This requires commutativity:

(w1 =22 Ay1 = 42) — (21 +y1 = Y2 + 22)
o Fix by adding:

(T1+y1 =y1 +x1) A (12 + 12 = Y2 + 72)
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Uninterpreted functions: usability

@ This is easy to prove:
(z1 =22 Ny = 42) — (21 + 51 = 22 +12)
@ This requires commutativity:
(w1 =22 Ay1 = 42) — (21 +y1 = Y2 + 22)
o Fix by adding:
(@1+y =y +x1) A (224 Y2 = Y2+ 22)

@ What about other cases?
Use more rewriting rules!
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Example: equivalence of C programs (1/4)

int power3(int in) {

out = in;
int power3 new(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

@ These two functions return the same value regardless if it is '*' or any
other function.

e Conclusion: we can prove equivalence by replacing '*' with an
uninterpreted function
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From programs to equations

@ But first we need to know how to turn programs into equations.

@ There are several options — we will see static single assignment for
bounded programs.
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Static Single Assignment (SSA) form

@ — see compiler class

@ ldea: Rename variables such that each variable is assigned exactly

once
Example: x=x*2; X=X %2;
al[i]=100; aj [19p1=100;
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Static Single Assignment (SSA) form

@ — see compiler class

@ ldea: Rename variables such that each variable is assigned exactly

once
Example: x=x*2; X=X %2;
al[i]=100; aj [19p1=100;

@ Read assignments as equalities

@ Generate constraints by simply conjoining these equalities
X17X0+Yyo; .
Xo=xX1*2; | r1=x0+tY A
Example: [i0]=1 To=x1%x2 A
a1 [10]=100; ailio] = 100
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SSA for bounded programs

What about if? Branches are handled using ¢-nodes.

int main() {
int x, y, Z;
y=8;
if (x)
Y=
else

y+t;

>

z=y+1;
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SSA for bounded programs

What about if? Branches are handled using ¢-nodes.

}

int main() {

int x, y, Z;
y=8;
if (x)
Y=
else
y+t;

>

z=y+1;

int main() {
int x, y, Z;

y1=8;
if (xp)
y2=y1-1;
else
y3=y1+l;
ya=¢(y2, y3);

z1=ya*1;
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SSA for bounded programs

What about if? Branches are handled using ¢-nodes.

int main() { int main() { y1 =8 A
int x, y, Z; int x, y, Z; Yo =y1 — 1 A
y=8; y1=8; ys=y1+1 A
. . Yg =
1fy(_x_); | 1fy(2x=o;1_1; | (zo#07y2 : y3)A
else L__I else L__I z1=ys+1

yt+t; y3=y1tl;

ya=¢(y2, y3);

z=y+1; Z1=y4t1;
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SSA for bounded programs

What about loops?
— We unwind them!

void £(...) {

while(cond) {
BODY;

}

Remainder;
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SSA for bounded programs

What about loops?
— We unwind them!

void £(...) {

if (cond) {
BODY;
while(cond) {
BODY;

}
}

Remainder;
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SSA for bounded programs

What about loops?
— We unwind them!

void £(...) {

if (cond) {
BODY;
if (cond) {
BODY;
while(cond) {
BODY;
}
}
}

Remainder;
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SSA for bounded programs

Some caveats:
@ Unwind how many times?

@ Must preserve locality of variables declared inside loop
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SSA for bounded programs

Some caveats:
@ Unwind how many times?

@ Must preserve locality of variables declared inside loop

There is a tool available that does this
e CBMC — C Bounded Model Checker

@ Bound is verified using unwinding assertions

Used frequently for embedded software
— Bound is a run-time guarantee

Integrated into Eclipse

Decision problem can be exported
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SSA for bounded programs: CBMC
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mple: equivalence of C programs (2/4)

int power3(int in) {

out = in;
int power3new(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

Version 1.0, 2007 36 / 47
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Example: equivalence of C programs (2/4)

int power3(int in) {

out = in;
int power3new(int in) {
for(i=0; i<2; i++) out = (in*in)*in;
out = out * in; return out;

return out;

}

Static single assignment (SSA) form:
out] = in AN
outy = outq * in A out] = (in xin) *in
outs = outy *in

Prove that both functions return the same value:

outs = out
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Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:
outy = AN
outy = outy * in A out) = (in xin) *xin
outs = outs * in

With uninterpreted functions:
outy = AN
outy = F(outy,in) A out) = F(F(in,in),in)
outs = F(outs,in)

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007



D. Kroening, O. Strichman (ETH/Technion)

Example: equivalence of C programs (3/4)

Static single assignment (SSA) form:

outy = AN
outy = outy * in N
outs = outs * in

out) = (in xin) *xin

With uninterpreted functions:
outy = AN
outy = F(outy,in) A
outs = F(outs,in)

out) = F(F(in,in),in)

With numbered uninterpreted functions:

out; = in AN
oute = Fy(outy,in) A
outs = Fy(outy,in)
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out) = Fy(F5(in,in),in)
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Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out;1 = AN
outy = Fy(outy,in) A out) = Fy(F5(in,in),in)
outs = Fy(outa,in)
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Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out;1 = AN
outy = Fy(outy,in) A out) = Fy(F5(in,in),in)
outs = Fy(outa,in)

Ackermann’s reduction:
out] = in A
oF outy = LA o out) = fa
outz = fo
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Example: equivalence of C programs (4/4)

With numbered uninterpreted functions:
out;1 = AN

outy = Fy(outy,in) A out) = Fy(F5(in,in),in)

outs = Fy(outa,in)

Ackermann’s reduction:
out] = in A
E

wo o outa = f1 A 905: outh = f4

outz = fo

The verification condition:

[/ (out; = outo— f1 = f2)
(out1 =in — f1 = f3)
(outy = f3 — f1 = fa)
(Outg =imn — f2 = fg)
( )
( )

> > > > >

outy = f3 — fa=f3
mn=f3 — f3=fa
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Uninterpreted functions: simplifications

@ Let n be the number of instances of F'()
e Both reduction schemes require O(n?) comparisons

@ This can be the bottleneck of the verification effort
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Uninterpreted functions: simplifications

@ Let n be the number of instances of F'()
e Both reduction schemes require O(n?) comparisons

@ This can be the bottleneck of the verification effort

@ Solution: try to guess the pairing of functions
@ Still sound: wrong guess can only make a valid formula invalid
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Simplifications (1)

o Given z1 = |, xo = @, x3 =, prove |= 01 = 0o.

o1=(x1+(a-22)) Na=xz3+5 Left
——— N——
f1 f2
o9 = (2 + (b-2h)) Nb=a4+5 Right
\7—/ \7—/
3 4

@ 4 function instances — 6 comparisons
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Simplifications (1)

o Given z1 = 2, xp = %, T3 = x4, prove |= 01 = 0s.

o1=(x1+(a-22)) Na=xz3+5 Left
——— N——
f1 f2
o9 = (2 + (b-2h)) Nb=a4+5 Right
\7—/ \7—/
3 4

@ 4 function instances — 6 comparisons
@ Guess: validity does not rely on f; = fo oron f3 = f4

o Idea: only enforce functional consistency of pairs (Left,Right).
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Simplifications (2)

o9 = () +(b-xh))ANb=125+5 Right
N— S——
I3 fa

@ Down to 4 comparisons!
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Simplifications (2)

o9 = () +(b-xh))ANb=125+5 Right
S——— SN——
I3 fa
@ Down to 4 comparisons!
@ Another guess: equivalence only depends on f; = f3 and fo = f4

@ Pattern matching may help here
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Simplifications (3)

o=(x1+(a-x2)) Na=x3+5 Left
— N——
1 fa
oo = () +(b-xh)) Nb=x5+5 Right
N— SN——
I3 fa
+

Match according /\ +
to patterns v . 1 /\
('signatures’) /\

Down to 2 comparisons! fi, 13 ‘ f2, fa

D. Kroening, O. Strichman (ETH/Technion) Decision Procedures Version 1.0, 2007 42 / 47



Simplifications (4)

or=(x1+(a-22)) Na=x3+5 Left
——— S——
fi P
oy =(z) +(b-25)) Nb=2a5+5 Right
J: [
3 4

Substitute

+
7N
intermediate /\
variables (in the i v
example: a, b) /L\

v 5



Simplifications (4)

Substitute
intermediate
variables (in the
example: a, b)

+
<
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The SSA example revisited (1)

With numbered uninterpreted functions:
outy = AN
outy = Fi(outy,in) A out) = Fy(F5(in,in),in)
outs = Fy(outy,in)
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The SSA example revisited (1)

With numbered uninterpreted functions:
outy = AN
outy = Fi(outy,in) A out) = Fy(F5(in,in),in)
outs = Fy(outy,in)

Map F} to Fj: Map F5 to Fy:

F F
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The SSA example revisited (2)

With numbered uninterpreted functions:
out] = in AN
outy = Fy(outy,in) A out) = Fy(F3(in,in),in)
outs = Fy(outy,in)

Ackermann'’s reduction:
outy = AN
o outy = f1 A oE out) = fu
outz = fo

The verification condition has shrunk:

(G5 " netnet] — oo
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Same example with Bryant’s reduction

With numbered uninterpreted functions:
out; = in A
outy = Fi(outy,in) A outy = Fy(F3(in,in),in)
outs = Fy(outy,in)

Bryant's reduction:
outy = AN E

@y out] =
E . to = A in = outy: f
Spa N ou 2 — fl < case ( case ;L':Ze ou 1 f; ) = outy: fa )
Outg = f2 true : fa

The verification condition:

(pF Npl) — outs = out}
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So is Equality Logic with UFs interesting?

© It is expressible enough to state something
interesting.

@ It is decidable and more efficiently solvable
than richer logics, for example in which some
functions are interpreted.

© Models which rely on infinite-type variables are
expressed more naturally in this logic in
comparison with Propositional Logic.
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