
Rely/Guarantee Reasoning for Asynchronous
Programs
Ivan Gavran1, Filip Niksic1, Aditya Kanade2, Rupak Majumdar1,
and Viktor Vafeiadis1

1 Max Planck Institute for Software Systems (MPI-SWS), Germany
2 Indian Institute of Science, Bangalore, India

Abstract
Asynchronous programming has become ubiquitous in smartphone and web application develop-
ment, as well as in the development of server-side and system applications. Many of the uses of
asynchrony can be modeled by extending programming languages with asynchronous procedure
calls—procedures not executed immediately, but stored and selected for execution at a later point
by a non-deterministic scheduler. Asynchronous calls induce a flow of control that is difficult to
reason about, which in turn makes formal verification of asynchronous programs challenging. In
response, we take a rely/guarantee approach: Each asynchronous procedure is verified separately
with respect to its rely and guarantee predicates; the correctness of the whole program then
follows from the natural conditions the rely/guarantee predicates have to satisfy. In this way, the
verification of asynchronous programs is modularly decomposed into the more usual verification
of sequential programs with synchronous calls. For the sequential program verification we use
Hoare-style deductive reasoning, which we demonstrate on several simplified examples. These
examples were inspired from programs written in C using the popular Libevent library; they are
manually annotated and verified within the state-of-the-art Frama-C platform.

1998 ACM Subject Classification F.3.1 Specifying and Verifying and Reasoning about Programs

Keywords and phrases asynchronous programs, rely/guarantee reasoning

1 Introduction

Asynchronous programming is a technique to efficiently manage multiple concurrent in-
teractions with the environment. Application development environments for smartphone
applications provide asynchronous APIs; client-side web programming with Javascript and
AJAX, high-performance systems software (e.g., nginx, Chromium, Tor), as well as embedded
systems, all make extensive use of asynchronous calls. By breaking long-running tasks into
individual procedures and posting callbacks that are triggered when background processing
completes, asynchronous programs enable resource-efficient, low-latency management of
concurrent requests.

In its usual implementation, the underlying programming system exposes an asynchronous
procedure call construct (either in the language or using a library), which allows the
programmer to post a procedure for execution in the future when a certain event occurs.
An event scheduler manages asynchronously posted procedures. When the corresponding
event occurs, the scheduler picks the associated procedure and runs it to completion. These
procedures are sequential code, possibly with recursion, and can post further asynchronous
procedures.

Unfortunately, while asynchronous programs can be very efficient, the manual management
of resources and asynchronous procedures can make programming in this model quite difficult.
The natural control flow of a task is obscured and the programmer must ensure correct

© Ivan Gavran, Filip Niksic, Aditya Kanade, Rupak Majumdar, and Viktor Vafeiadis;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 Rely/Guarantee Reasoning for Asynchronous Programs

behavior for all possible orderings of external events. Specifically, the global state of the
program can change between the time an asynchronous procedure is posted and the time the
scheduler picks and runs it.

In recent years, a number of automatic static analyses for asynchronous programs have
been proposed. The main theoretical result is the equivalence between an abstract model
of asynchronous programs with Boolean variables and Petri nets, thus showing that safety
and liveness verification problems are decidable for this model [20, 15, 11]. In practice, this
equivalence has been the basis for several automatic tools [17, 7]. Unfortunately, existing
tools still fall short of verifying “real” asynchronous programs. First, existing tools often
ignore important features such as passing data as arguments to asynchronous calls or heap
data structures in order to find a Boolean abstraction. Second, existing tools perform a
global coverability analysis of the Petri net equivalent to the abstracted program. Despite
the use of sophisticated heuristics, global coverability analysis tools scale poorly, especially
when there are many Boolean variables [8].

In this paper, we provide a modular proof system for asynchronous programs based on
rely/guarantee reasoning [16, 2, 10]. For each asynchronous procedure, we use a (“local”)
precondition and a postcondition, similar to modular proofs for sequential recursive programs.
In addition, we use a rely and a guarantee. Intuitively, the rely is the assumption about the
global state that the procedure makes about all other procedures that may happen in parallel
with it. The guarantee is what the procedure ensures about the global state. In addition to
predicates over global state, our rules also use predicates posted and pending that track if
a task was posted asynchronously in the current call stack, or if it is pending, respectively.
With these additional predicates, our modular proof rules are extremely simple:

running each task from its precondition establishes its guarantee and postcondition;
the rely of each task must preserve its precondition;
if a procedure posts task h and does not cancel it, it establishes the precondition of h at
the end of its execution; and finally,
the guarantee of each task that may run between the time h is posted and h is executed
establishes the rely of h.

We prove soundness of these rules, based on an invariant that ensures that if a procedure is
pending, then its precondition remains valid at every schedule point.

It is possible to simulate asynchronous programs using multi-threaded programs and
vice versa [18]. Thus, in principle, rely/guarantee reasoning for multi-threaded programs
[16, 10, 14, 13] —extended with rules for dynamic thread creation— could be used to reason
about asynchronous programs. However, by focusing on the specific concurrency model,
we can deal with programming features such as recursive tasks, as well as more advanced
asynchronous programming features such as deletion of tasks. To support these features, the
reduction to multi-threaded programs would add additional data structures to the program,
losing the structure of the program. Thus, “compiling” to threads, while theoretically possible,
is not likely to preserve the local, and often simple, reason why a program is correct.

We have implemented our proof system on top of the Frama-C framework and show
modular proofs of partial correctness on two asynchronous programs written in C using the
Libevent library. The programs are simple but realistic examples of common asynchronous id-
ioms. We show that one can verify these idioms by constructing “small” modular proofs, using
generic rely and guarantee predicates that can be automatically derived from preconditions.
Moreover, reasoning about asynchronous programs can be effectively reduced to modular rea-
soning about sequential programs, for which sophisticated verification environments already
exist.

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis 3

1 struct client_state { ... };
2
3 async main () {
4 // prepare a socket for
5 // incoming connections
6 int socket = prepare_socket ();
7 post accept (socket);
8 }
9

10 //@ requires \ valid (s);
11 async read(struct client_state *s) {
12 if (/* s->fd ready */) {
13 // receive a chunk and store a
14 // rot13 ’d version into s-> buffer
15 post write (s);
16 post read(s);
17 }
18 else { // connection closed
19 delete write (s);
20 free(s);
21 }
22 }

23 async accept (int socket) {
24 if (/* socket ready */) {
25 struct client_state *s = malloc (...);
26 s->fd = accept_connection (socket);
27 // initialize s-> buffer
28 post read(s);
29 }
30 post accept (socket);
31 }
32
33 //@ requires \ valid (s);
34 async write (struct client_state *s) {
35 if (/* s->fd ready */) {
36 // send a chunk
37 if (/* there ’s more to send */)
38 post write (s);
39 }
40 else { // connection closed
41 delete read(s);
42 free(s);
43 }
44 }

Figure 1 Snippet of the ROT13 program. In this and the subsequent figures, parts of the code
are omitted and replaced by comments for brevity.

2 Main Idea

Asynchronous Programs. Figure 1 shows a version of the ROT13 server from the Libevent
manual [19]. The server receives input strings from a client, and sends back the strings
obfuscated using ROT13. The execution starts in the procedure main, which prepares a
non-blocking socket for incoming connections, and passes it to the procedure accept via an
asynchronous call. The asynchronous call, denoted by the keyword post, schedules accept
for later execution. In general, a procedure marked with the keyword async can be posted
with some arguments. The arguments determine an instance of the procedure; the instance
is stored in a set of pending instances. After some pending instance finishes executing, a
scheduler non-deterministically selects the next one and executes it completely. In case of the
ROT13 server, after main is done, the scheduler selects the single pending instance of accept.
accept checks whether a client connection is waiting to be accepted; if so, it accepts the
connection and allocates memory consisting of a socket and a buffer for communication with
the client. The allocated memory, addressed by the pointer s, is then asynchronously passed
to the procedure read. Finally, regardless of whether the connection has been accepted or
not, accept re-posts itself to reschedule itself for processing any upcoming connections.

While the client connection is open, the corresponding memory allocated by accept
is handled by a reader-writer pair: the reader (read) receives an input string and stores
an obfuscated version of it into the buffer. It then posts the writer (write), which sends
the content of the buffer back to the client. An interesting thing happens when the client
disconnects, which can happen during the execution of either the reader or the writer. When
one of the procedures notices that the connection has been closed, it releases the allocated
memory. However, the procedure does not know whether an instance of its counterpart is
still pending; if it is, it would try to access the deallocated memory. To make sure this
does not happen, before releasing the memory, the procedure deletes (keyword delete) the
potentially pending instance of its counterpart.

The example shows that control structures for asynchronous programs can be complex:
tasks may post other tasks for later processing, arguments can be passed on to asynchronously
posted tasks, and an unbounded number of tasks can be pending at a time.

4 Rely/Guarantee Reasoning for Asynchronous Programs

Safety Verification. We would like to verify that every memory access in this program is
safe; that is, we want to verify that both read and write can safely dereference the pointer
s. We assume this property is expressed by the predicate valid(s). We write valid(s) as a
precondition for read and write in lines 10 and 33.

Let us focus only on read. Its precondition clearly holds at each call site: it holds at
line 28 since the memory addressed by s has just been freshly allocated (for simplicity,
we assume malloc succeeds), and it holds at line 16 assuming read’s precondition holds.
However, between the point read is posted and the point it is executed, two different things
might invalidate its precondition. First, the caller may still have code to execute after the
call. Second, there may be pending instances of accept, read, and write concurrent with
read(s) that get executed before read(s) and deallocate the memory addressed by s.

To deal with the code of read’s callers, also referred to as read’s parents, we introduce
predicates postedr(s) and pendingr(s). (We also introduce a pair of predicates for every
other asynchronous procedure, namely main, accept, and write.) Predicate postedr(s) holds
if and only if read(s) has been posted during the execution of the current asynchronous
procedure (and not deleted). Predicate pendingr(s) holds if and only if read(s) is in the set
of pending instances. Note that if an asynchronous procedure posts and afterwards deletes
read(s), neither postedr(s) nor pendingr(s) will hold. Using the introduced predicates,
read’s parents can now express the following parent-child postcondition:

∀s. postedr(s) =⇒ valid(s) . (PC)

Informally, this postcondition says that every instance of read that has been posted during
the execution of the procedure, and that has not been deleted afterwards, has been posted
with the argument s that is valid, i.e., that can be safely dereferenced.

Rely/Guarantee. To deal with the procedures whose instances are concurrent with read,
also referred to as read’s concurrent siblings, we employ rely/guarantee reasoning. We
introduce a rely condition for read:

∀s. pending′r(s) ∧ pendingr(s) ∧ valid′(s) =⇒ valid(s) , (R)

where the primed versions of the predicates denote their truth at the beginning of execution
of a procedure. Informally, the rely condition says that if read(s) was pending with a valid
s when a concurrent sibling started executing, and read(s) is still pending at the end of
that execution, then s is still valid. In other words, read relies on the assumption that
its precondition is preserved by its concurrent siblings. Any of read’s concurrent siblings,
namely accept, read, and write, must guarantee read’s rely condition. This is achieved by
ensuring the concurrent siblings’ postconditions imply the rely condition.

As shown formally in the next section, the rely/guarantee conditions ensure the following
global invariant:

∀s. pendingr(s) =⇒ valid(s) . (I)

This invariant holds at the beginning of execution of every asynchronous procedure. Conse-
quently, read’s precondition holds at the moment read is executed.

The benefit of the described approach is that it abstracts away reasoning about the
non-deterministic scheduler and the order in which it dispatches pending instances. We only
need to verify that each asynchronous procedure satisfies its postcondition. This can be
achieved using a sequential verification tool (e.g., Frama-C in our case).

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis 5

A natural question to ask is why we have two predicates—postedr and pendingr—when it
seems that pendingr alone should be sufficient? If the global invariant (I) is what we are after,
why not just make it a precondition and a postcondition of every asynchronous procedure?
While this is sufficient, in order to prove (I) as a postcondition of an asynchronous procedure,
one would need to do a case split, and separately consider read’s instances posted during
the execution of the procedure, and instances that had been pending before the procedure
started executing. In the first case, the procedure knows why read’s precondition holds,
while in the second case it assumes that read’s precondition holds. By having the special
predicate postedr, we can make this case split explicit: the two separate cases correspond to
the parent-child condition (PC) and the rely condition (R). The asynchronous procedures
assume only their original preconditions, making the overall reasoning more local.

3 Technical Details

We formalize the rely/guarantee proof rules on SLAP, a simple language with asynchronous
procedure calls. The main result of the paper is Theorem 1, which says that in order to verify
a program with asynchronous procedure calls, it suffices to modularly verify each procedure
of a sequential program.

3.1 SLAP: Syntax and Semantics
Syntax. A SLAP program consists of a set of program variables Var , a set of procedure
names H, a subset AH ⊆ H of asynchronous procedures including a special procedure main,
and a mapping Π from procedure names in H to commands from a set Cmds of commands
(defined below).

We distinguish between global variables, denoted by GVar , and local variables, denoted
by LVar . Local variables also include parameters of procedures. We also introduce a set
of logical variables, disjoint from the program variables, which are used for constructing
quantified formulas. We write x, y, z for single variables, and ~x, ~y, ~z for vectors of variables.
We usually use x, ~x to denote global variables, and y, z, ~y, ~z to denote local variables. We use
the same letters for logical variables; this should not cause confusion.

We use a disjoint, primed, copy of the set of variables Var . Primed variables are used
to denote the state of the program at the beginning of execution of a procedure, while
the unprimed variables denote the current state. Logical variables do not have primed
counterparts, although we often abuse notation and write them primed.

Variables are used to construct expressions. We leave the exact syntax of expressions
unspecified. We just distinguish between Boolean expressions (usually denoted by B), and
all expressions (usually denoted by E).

The set of commands, denoted Cmds, is generated by the grammar:

C ::= x := E | assume(B) | assert(B) | g(E1, . . . , Ek)
| post h(E1, . . . , Ek) | delete h(E1, . . . , Ek) | enter h | exit h
| C1;C2 | C1 + C2 | C∗

The atomic commands are assignments (x := E), assumptions (assume(B)), assertions
(assert(B)), and synchronous calls (g(. . .) for g ∈ H \ AH), as in a sequential imperative
language, together with the additional commands for asynchronous calls (post h(. . .) for
h ∈ AH), deletions of pending instances (delete h(. . .)), and special commands enter h
and exit h marking the entrance to and exit from a procedure. Starting with the atomic

6 Rely/Guarantee Reasoning for Asynchronous Programs

σ′, σ, o′, o, p′, p |= posted′h(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ o′

σ′, σ, o′, o, p′, p |= postedh(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ o
σ′, σ, o′, o, p′, p |= pending′h(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ p′

σ′, σ, o′, o, p′, p |= pendingh(E1, . . . , Ek) iff (h,⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]) ∈ p
σ′, σ, o′, o, p′, p |= B iff JBKσ′,σ = true

Figure 2 Semantics of atomic formulas.

commands, complex commands are built using sequential composition (;), non-deterministic
choice (+), and iteration (∗).

Most of the commands in the language have their expected semantics. The command
post h(E1, . . . , Ek) posts an asynchronous call of procedure h ∈ AH with arguments
E1, . . . , Ek for future execution, and delete h(E1, . . . , Ek) deletes the pending occurrence of
the asynchronously posted procedure h with arguments E1, . . . , Ek if it exists. The enter h
and exit h commands are there for a technical reason: they mark the entry and exit of
procedure h. We assume that the command Π(h) of each procedure h starts with enter h,
ends with exit h, and that those two commands do not appear anywhere in between.

Formulas are generated as first order formulas whose atomic predicates are Boolean
expressions as well as the predicates posted′h, postedh, pending′h, and pendingh, for each
asynchronous procedure h ∈ AH . Intuitively, postedh is used for reasoning about the
accumulated asynchronous calls to h made during the execution of a single asynchronous
procedure, and pendingh is used for reasoning about the pending asynchronous calls to h,
not necessarily made during the execution of a single asynchronous procedure. Like program
variables, these predicates have the corresponding primed versions, used for reasoning about
the state at the beginning of execution of a procedure. For every formula F we write F ′ for
the formula obtained by replacing all unprimed occurrences of program variables, as well as
the predicates postedh and pendingg, by their primed counterparts.

Semantics. Assuming there is a set of values Val, a function σ : Var → Val is called a
valuation. We use notation σG := σ|GVar for the restriction of σ to global variables, and
σL := σ|LVar for the restriction of σ to local variables. We call the restrictions global
valuation and local valuation, respectively. We use notation σ[x1 7→ v1, . . . , xk 7→ vk] to
denote a valuation that differs from σ only in variables x1, . . . , xk, which are mapped to
values v1, . . . , vk. We assume there is a special value ⊥ ∈ Val denoting a non-initialized value.
We also use ⊥ to denote a constant valuation that maps every variable to ⊥.

Given valuations σ′ and σ, we denote the value of an expression E by JEKσ′,σ. Here, σ′
is used for evaluating the primed variables (the values at the beginning of execution of the
current procedure), and σ is used for evaluating the unprimed variables (the current values).

Next, we define a configuration Φ = (s, σG, o, p) of a SLAP program, where s is a stack
that keeps track of synchronous calls, σG is a valuation that describes the global state, o is a
set of instances asynchronously posted within the current asynchronous procedure, and p is
a set of pending instances. Stack s holds stack frames—tuples of the form (C, σ′, σL, o′, p′),
where C is the command that needs to be executed in the current stack frame, σ′ is the
valuation at the beginning of execution in the current stack frame, σL is the valuation that
describes the current local state, and o′ and p′ are sets of posted and pending instances at

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis 7

[Enter]

((enter h;C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, o, p)

[Exit]

((exit h, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s (s, σG, o, p)

[Assume]
σ
′
, σ, o

′
, o, p

′
, p |= F

((assume(F);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, o, p)

[Assert OK]
σ
′
, σ, o

′
, o, p

′
, p |= F

((assert(F);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, o, p)

[Assert Wrong]
σ
′
, σ, o

′
, o, p

′
, p 6|= F

((assert(F);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s wrong

[Assign]
ρ = σ[x 7→ JEKσ′,σ]

((x := E;C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, ρL, o′, p′) :: s, ρG, o, p)

[Choice]
i ∈ {1, 2}

((C1 + C2;C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((Ci;C, σ′, σL, o′, p′) :: s, σG, o, p)

[Loop Skip]

((C∗;C′, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C′, σ′, σL, o′, p′) :: s, σG, o, p)

[Loop Step]

((C∗;C′, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C;C∗;C′, σ′, σL, o′, p′) :: s, σG, o, p)

[Sync Call]
h ∈ H \ AH ρ = ⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ]

((h(E1, . . . , Ek);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((Π(h), σG ∪ ρL, ρL, o, p) :: (C;σ′, σL, o′, p′) :: s, σG, o, p)

[Async Call]
h ∈ AH ρ = ⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ] q = o ∪ {(h, ρL)} r = p ∪ {(h, ρL)}

((post h(E1, . . . , Ek);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, q, r)

[Async Delete]
h ∈ AH ρ = ⊥[y1 7→ JE1Kσ′,σ, . . . , yk 7→ JEkKσ′,σ] q = o \ {(h, ρL)} r = p \ {(h, ρL)}

((delete h(E1, . . . , Ek);C, σ′, σL, o′, p′) :: s, σG, o, p)
Π−→s ((C, σ′, σL, o′, p′) :: s, σG, q, r)

Figure 3 Semantics of SLAP—sequential part.

the beginning of execution in the current stack frame. Sets o, p, o′, and p′ hold pairs of
the form (h, σL), where h is the posted or pending procedure, and σL is a valuation that
describes the values passed to h. We use notation t :: ts to denote a stack consisting of a
head t and a tail ts, and ∅ to denote both an empty stack and an empty set. Apart from
configurations of the form (s, σG, o, p), which are part of the correct program execution, there
is also a special configuration wrong.

At this point we have introduced all the concepts and terminology needed to give semantics
to SLAP programs. First, the semantics of formulas is given in terms of valuations σ′, σ, and
sets o′, o, p′, p. The semantics of atomic formulas is shown in Figure 2, and the semantics
of complex formulas is defined inductively. We write σ′, σ, o′, o, p′, p |= F if F holds with
respect to σ′, σ, o′, o, p′, p. We also write Φ |= F if Φ = ((C, σ′, σL, o′, p′) :: s, σG, o, p) and
σ′, σ, o′, o, p′, p |= F . If Φ = (∅, σG, o, p), the truth of F containing local or primed variables,
or the predicates posted′h and pending′h is undefined. Finally, wrong |= F for any F .

Next, we define the sequential semantics of a SLAP program Π: H → Cmds as a
transition system over configurations. The rules that define the sequential transition relation
Π−→s are given in Figure 3. The asynchronous semantics extends the sequential semantics

8 Rely/Guarantee Reasoning for Asynchronous Programs

[Extend]

Φ Π−→s Φ′

Φ Π−→a Φ′

[Dispatch]
h ∈ AH (h, σL) ∈ p r = p \ {(h, σL)}

(∅, σG, o, p)
Π−→a ((Π(h), σ, σL, ∅, r) :: ∅, σG, ∅, r)

Figure 4 Semantics of SLAP—asynchronous part.

∀~x ′, ~x, ~y ′, ~y. P ′h(~x ′, ~y ′) ∧Qh(~x ′, ~y ′, ~x, ~y) =⇒ Gh(~x ′, ~x) (1)

∀~x ′, ~x, ~y, ~z ′, ~z. postedh(~y) ∧ P ′g(~x ′, ~z ′) ∧Qg(~x ′, ~z ′, ~x, ~z) =⇒ Ph(~x, ~y) , (2)
where g ∈ parents(h)

∀~x ′, ~x, ~y. pending′h(~y) ∧ pendingh(~y) ∧ P ′h(~x ′, ~y) ∧Rh(~x ′, ~x) =⇒ Ph(~x, ~y) (3)

∀~x ′, ~x. Gg(~x ′, ~x) =⇒ Rh(~x ′, ~x) , (4)
where g ∈ siblings(h)

Figure 5 Rely/guarantee conditions. Variables ~x ′, ~x represent global variables, and variables
~y ′, ~y, ~z ′, ~z represent parameters.

by integrating the behavior of the non-deterministic scheduler. The rules that define the
asynchronous transition relation Π−→a are given in Figure 4.

Note that we are modeling the pool of pending procedure instances using a set. Therefore,
posting an instance that is already pending has no effect. An alternative would be to use
a multiset and count the number of pending instances. We chose the first option for three
reasons. First, it corresponds to the semantics of Libevent’s function event_add(). Second,
it simplifies the semantics of deleting procedure instances. And third, one can always simulate
the counting semantics by extending the procedure with an extra parameter that acts as a
counter.

3.2 Rely/Guarantee Decomposition
In order to reason about an asynchronous program Π: H → Cmds modularly, for each of its
asynchronous procedures h ∈ AH we require a specification in terms of formulas Ph, Rh, Gh,
and Qh. Formulas Ph and Qh are h’s precondition and postcondition in the standard sense:
Ph is a formula over Var that is supposed to hold at the beginning of h’s execution, while Qh
is a formula over Var ′ ∪Var that is supposed to hold at the end of h’s execution. Predicates
Rh and Gh are formulas over GVar ′ ∪GVar , and they represent the procedure’s rely and
guarantee conditions. Intuitively, Rh tells what h relies on about the change of the global
state, while Gh tells what h guarantees about the change of the global state. We require that
the predicates posted′g, postedg, pending′g, and pendingg appear in the specification only
in negative positions. Furthermore, in Ph we allow only the unprimed predicates, and we
require Pmain ≡ true.

We will say that the specification (Ph, Rh, Gh, Qh)h∈AH is a rely/guarantee decomposition
of Π if the four conditions in Figure 5 are satisfied. Condition (1) requires procedure h to
establish its guarantee. Condition (2) requires that each parent of h, i.e. each asynchronous
procedure that posts h, establishes h’s precondition. Condition (3) is the stability condition:

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis 9

it requires the rely predicate Rh to be strong enough to preserve preconditions of procedure
h’s pending instances. Finally, condition (4) requires that h’s rely predicate is guaranteed by
each of h’s concurrent siblings, i.e. asynchronous procedures that may be executed between
the point when h is posted and the point when h itself is executed. Together, conditions
(1)–(4) imply the following lifecycle of an asynchronous procedure instance: once posted by
its parent, its precondition is established. Before it is executed, its precondition is preserved
by its concurrent siblings. When the procedure instance is finally executed, its precondition
holds.

Given a rely/guarantee decomposition (Ph, Rh, Gh, Qh)h∈AH of a program Π: H → Cmds,
we define a transformation of commands τ : Cmds → Cmds that inserts assumptions and
assertions of preconditions and postconditions at the right places:

τ(enter h) := enter h; assume(Ph), for h ∈ AH,
τ(exit h) := assert(Qh); exit h, for h ∈ AH,
τ(C1;C2) := τ(C1); τ(C2)

τ(C1 + C2) := τ(C1) + τ(C2)
τ(C∗) := τ(C)∗

τ(C) := τ(C), otherwise.

The definition of τ is naturally lifted to configurations (s, σG, o, p) and wrong: in case
of (s, σG, o, p), τ transforms all commands that await execution on the stack s, while
τ(wrong) = wrong.

Given a program Π: H → Cmds, we will say that Π is sequentially correct with respect to
a rely/guarantee decomposition (Ph, Rh, Gh, Qh)h∈AH if for every valuation σ : Var → Val,
every set of pending instances p, and every asynchronous procedure h ∈ AH we have

((τ(Π(h)), σ, σL, ∅, p) :: ∅, σG, ∅, p) 6τ◦Π−−→∗s wrong .

We will say that Π is correct if we have

(∅,⊥G, ∅, {(main,⊥L)}) 6Π−→∗a wrong .

With these definitions, the soundness of rely/guarantee reasoning is stated in the following
theorem.

I Theorem 1. Let Π: H → Cmds be an asynchronous program. If Π is sequentially correct
with respect to a rely/guarantee decomposition (Ph, Rh, Gh, Qh)h∈AH , then it is correct.

The proof of Theorem 1 is based on four technical results.

I Lemma 2. Let Π: H → Cmds be an asynchronous program, and let Φ0,Φ be configurations
of Π such that Φ0 = (∅,⊥G, ∅, {(main,⊥L)}), Φ = (s, σG, o, p) and Φ0

Π−→∗a Φ.
1. For every stack frame (C, σ′, σL, o′, p′) ∈ s, p ⊆ o ∪ p′.
2. If s is non-empty, then for every h ∈ AH,

Φ |= ∀~y. pendingh(~y) =⇒ (postedh(~y) ∨ pending′h(~y)) .

Proof. The first statement is proved by induction on the length of the trace. A straightforward
check shows that every rule preserves the invariant p ⊆ o ∪ p′. The second statement is a
direct corollary of the first statement. J

10 Rely/Guarantee Reasoning for Asynchronous Programs

The next lemma states that preconditions of pending instances hold at each dispatch
point. Thus, it formalizes the discussion in Section 2, where the invariant (I) is found to hold
at each dispatch point.

I Lemma 3. Let Π: H → Cmds be an asynchronous program with a rely/guarantee decom-
position (Ph, Rh, Gh, Qh)h∈AH . If (∅,⊥G, ∅, {(main,⊥L)}) τ◦Π−−→∗a (∅, σG, o, p), then for every
g ∈ AH we have σG, σG, ∅, o, p, p |= ∀~y. pendingg(~y) =⇒ Pg(~x, ~y).

Proof. By induction on the number of applications of the rule [Dispatch], using the
rely/guarantee conditions (1)–(4) and the invariant from Lemma 2(2). J

I Corollary 4. Let Π: H → Cmds be an asynchronous program with a rely/guarantee
decomposition (Ph, Rh, Gh, Qh)h∈AH , and let (∅,⊥G, ∅, {(main,⊥L)}) τ◦Π−−→+

a τ(Φ), with the
last step being a dispatch of procedure h ∈ AH. Then, τ(Φ) |= Ph(~x, ~y).

Proof. From Lemma 3, we know that the state just before the dispatch satisfies Ph(~x, ~y)
because h is pending in that state. Our conclusion, therefore, follows because Ph(~x, ~y) can
contain predicates postedg and pendingg only in negative positions, and the rule [Dispatch]
makes the sets of posted and pending instances smaller. J

I Lemma 5. Let Π: H → Cmds be an asynchronous program with a rely/guarantee decom-
position (Ph, Rh, Gh, Qh)h∈AH , and let Φ0,Φ′0, . . . ,Φk,Φ′k be configurations of Π such that
Φ0 = (∅,⊥G, ∅, {(main,⊥L)}) and

Φ0
Π−→∗s Φ′0

Π−→a Φ1
Π−→∗s Φ′1

Π−→a · · ·
Π−→a Φk

Π−→∗s Φ′k ,

with all of the asynchronous steps being taken according to the rule [Dispatch]. Either:

1. ∀i ∈ 0..k. τ(Φi)
τ◦Π−−→∗s τ(Φ′i), or

2. ∃i ∈ 0..k. τ(Φi)
τ◦Π−−→∗s wrong

Proof. By induction on the length of the trace. A straightforward inspection of the rules
in Figure 3 shows that each step of the original trace can be simulated by one or two steps
of the transformed trace. The only non-trivial point is showing that the inserted assume
statements always hold, which follows from Corollary 4. J

Proof of Theorem 1. By contraposition and application of Lemma 5. J

Notice that the rely/guarantee decomposition uses two relations: parents and siblings.
Formally, g ∈ parents(h) if there is a reachable configuration obtained by executing exit g
in which h is in the set of posted instances. Similarly, g ∈ siblings(h) if there is a reachable
configuration in which both g and h are in the set of pending instances. While these relations
are hard to compute precisely, Theorem 1 holds when we use any over-approximation of these
relations. A trivial over-approximation of both relations is the set AH of all asynchronous
procedures. In Section 4, we discuss a better approximation obtained through simple static
analysis.

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis 11

4 Rely/Guarantee in Practice

4.1 Implementation for Libevent
We focused on C programs that use the Libevent library1. Libevent is an event notification
library whose main purpose is to unify OS-specific mechanisms for handling events that occur
on file descriptors. From this it also extends to handling signals and timeout events. The
library is used in asynchronous applications such as the Chromium web browser, Memchached,
SNTP, and Tor.

We abstract away the details of the events by assuming their handlers are dispatched
non-deterministically, instead of when the events actually occur. Thus, registering an event
handler for a specific event corresponds to calling the handler asynchronously in our model.

Even with this abstraction, Libevent remains too complex for reasoning about directly.
Therefore, we hide it behind a much simpler interface that corresponds to SLAP: For
each asynchronous procedure h, we provide two (synchronous) functions called post_h and
delete_h, with the same parameters as h. As the prefixes suggest, these functions are used
for posting and deleting h’s instances. With these functions, the C code we are analyzing
directly resembles the code of the ROT13 server in Figure 1; the difference is that instead of
the keywords post and delete, we use the functions with the corresponding prefixes.

We implemented the rely/guarantee rules on top of the Frama-C verification platform
[6]. We use ACSL, Frama-C’s specification language, which is expressive enough to encode
the predicates posted and pending, with their state being maintained using ghost code.
The specification is a fairly straightforward encoding of the semantics of SLAP. After the
transformation that inserts appropriate preconditions and postconditions (along with the
necessary ghost code), we use Frama-C’s WP (weakest-precondition) plugin to generate
verification conditions that are discharged by Z3.

In order to over-estimate the sets of parents and concurrent siblings, we manually perform
a simple static analysis. In this analysis, we ignore deletes, and only look at posts. For each
procedure h we perform a 0–1–ω abstraction of the number of asynchronous procedures’
instances posted at each location. Specifically, at h’s exit point this gives us an abstracted
number of instances of each procedure posted by h. From this information, we can directly
construct sets of children, or equivalently parents. Furthermore, if h posts f and g, then
f ∈ siblings(g) and g ∈ siblings(f). Also, if h posts more than one instance of g, then
g ∈ siblings(g). We use these two facts to bootstrap the following recursion that computes
siblings: if f ∈ siblings(g), then f ′ ∈ siblings(g) and f ∈ siblings(g′) for every f ′ ∈ children(f)
and g′ ∈ children(g).

An archive with the verified programs can be found at the URL: http://www.mpi-sws.
org/~fniksic/concur2015/rely-guarantee.tar.gz.

4.2 Generic Rely/Guarantee Predicates
Instead of asking the programmer to manually specify rely/guarantee predicates and post-
conditions, and then checking that they satisfy the rely/guarantee conditions (1)–(4), we
can use generic predicates shown in Figure 6. These predicates trivially satisfy conditions
(1)–(4); in fact, they are the weakest predicates to do so.

Note that the generic predicates, while convenient, might not be sufficient for verifying
correctness of all programs. The reason is that the proof obligations for the sequential

1 http://libevent.org/

http://www.mpi-sws.org/~fniksic/concur2015/rely-guarantee.tar.gz
http://www.mpi-sws.org/~fniksic/concur2015/rely-guarantee.tar.gz
http://libevent.org/

12 Rely/Guarantee Reasoning for Asynchronous Programs

Rh(~x ′, ~x) ≡ ∀~y. pending′h(~y) ∧ pendingh(~y) ∧ P ′h(~x ′, ~y) =⇒ Ph(~x, ~y)

Gh(~x ′, ~x) ≡
∧

g∈siblings(h)

Rg(~x ′, ~x)

Qh(~x ′, ~z ′, ~x, ~z) ≡ Gh(~x ′, ~x) ∧
∧

g∈children(h)

∀~y. postedg(~y) =⇒ Pg(~x, ~y)

Figure 6 Generic rely/guarantee predicates.

1 struct device {
2 int owner ;
3 // ...
4 } dev;
5
6 async main () {
7 dev. owner = 0;
8 int socket = prepare_socket ();
9 post listen (socket);

10 }
11
12 /*@ requires id > 0;
13 @ requires global_invariant_write ;
14 @*/
15 async new_client (int id , int fd) {
16 if (dev. owner > 0)
17 post new_client (id , fd);
18 else {
19 dev. owner = id;
20 post write (id , fd);
21 }
22 }

23 async listen (int socket) {
24 if (/* socket ready */) {
25 int id = new_client_id ();
26 int fd = accept_connection (socket);
27 post new_client (id , fd);
28 }
29 post listen (socket);
30 }
31
32 /*@ requires
33 @ id > 0 ∧
34 @ dev. owner = id ∧
35 @ ∀ int id1 , int fd1 ;
36 @ pending_write (id1 , fd1)
37 @ ⇒ id = id1 ∧ fd = fd1
38 @*/
39 async write (int id , int fd) {
40 if (transfer (fd , dev))
41 post write (id , fd);
42 else // write complete
43 dev. owner = 0;
44 }

Figure 7 Snippet of the Race program.

programs obtained by applying the transformation τ may not be provable. The generic
predicates are sufficient for the ROT13 server from Section 2, where the preconditions are:
Pmain ≡ Paccept ≡ true, and Pread ≡ Pwrite ≡ valid(s). Plugging these preconditions into the
generic predicates from Figure 6 gives rise to proof obligations that can be discharged by Z3.
However, the generic predicates are not sufficient for the program we discuss next.

Consider the Race program [15] in Figure 7. Initially, procedure main sets up a global
resource called dev to which multiple clients will transfer data by setting the dev.owner
flag to zero. main then prepares a socket and posts the procedure listen to listen to client
connections. listen checks whether the socket is ready; if so, it accepts the connection to get
a file descriptor fd, and generates a unique positive id for the client. It then passes id and
fd to the procedure new_client. new_client checks whether the device is currently owned
by some client (dev.owner>0); if so, it re-posts itself. If the device is free (dev.owner==0),
new_client takes the ownership for the client identified by id and posts the procedure write
that performs the transfer of the client’s data. write operates in multiple steps, re-posting
itself until the transfer is done. At the end, it releases the device by setting dev.owner back
to zero.

In this example, since multiple clients are trying to non-atomically write to a single shared
resource, the important property is mutual exclusion: there should always be at most one
pending instance write(id, fd), and if there is one, dev.owner should be set to id. We
encode this property as a precondition Pwrite to write in lines 32–37.

To ensure mutual exclusion, procedure new_client assumes id>0 as its precondition in

I. Gavran, F. Niksic, A. Kanade, R. Majumdar, and V. Vafeiadis 13

line 12. However, this precondition is not sufficiently strong for new_client to establish
write’s generic rely predicate. This is due to write’s precondition including assumptions
about other of write’s pending instances. However, new_client can establish write’s
rely if it additionally assumes write’s global invariant ∀id, fd. pendingwrite(id, fd) =⇒
Pwrite(id, fd) (line 13).

In order to justify new_client’s additional assumption, and show that there is no hidden
circular reasoning, we show that we can weaken the rely/guarantee conditions (1) and (2).
Indeed, Lemma 3 still holds if we replace conditions (1) and (2) with the following weaker
versions:

∀~x ′, ~x, ~y ′, ~y.
∧

f∈AH

(
∀~z. pending′f (~z) =⇒ P ′f (~x ′, ~z)

)
∧ P ′h(~x ′, ~y ′) ∧Qh(~x ′, ~y ′, ~x, ~y) =⇒ Gh(~x ′, ~x)

(1’)

∀~x ′, ~x, ~y, ~z ′, ~z.
∧

f∈AH

(
∀~u. pending′f (~u) =⇒ P ′f (~x ′, ~u)

)
∧ postedh(~y) ∧ P ′g(~x ′, ~z ′) ∧Qg(~x ′, ~z ′, ~x, ~z) =⇒ Ph(~x, ~y) ,

(2’)

where g ∈ parents(h)

The generic postconditions Qh can now be weakened as follows.

Qh(~x ′, ~z ′, ~x, ~z) ≡
∧

f∈AH

(
∀~y. pending′f (~y) =⇒ P ′f (~x ′, ~y)

)
=⇒

(
Gh(~x ′, ~x) ∧

∧
g∈children(h)

∀~y. postedg(~y) =⇒ Pg(~x, ~y)
)

This allows asynchronous procedures to freely assume any of the global invariants ensured
by Lemma 3 if it helps them to establish their guarantees. Even though at first glance such
additional assumptions might seem vacuous, the Race example shows this is not the case.

4.3 Limitations

In practice, Frama-C and the WP plugin have limitations that are orthogonal to the
rely/guarantee approach. One limitation is WP’s lack of support for dynamic memory
allocation. In fact, in order to verify the ROT13 server, we were not able to use Frama-C’s
built-in predicate \valid. Instead, we had to specify our own validity predicate and use
corresponding dedicated malloc and free functions. Generalizing such an approach to more
complicated programs is infeasible, as our custom memory model does not integrate well
with the built-in one. A related limitation is restricted reasoning about inductive data
structures. While Frama-C’s specification language ACSL supports inductive predicates,
the WP plugin does not fully support them. Moreover, reasoning about even the simplest
inductive data structures such as linked lists may require separation predicates that are
beyond the expressive power of ACSL. Our rely/guarantee rules work “modulo” a sequential
verifier, so better handling of these limitations will allow reasoning about more complex
asynchronous programs.

Acknowledgements. This research was sponsored in part by the EC FP7 FET project
ADVENT (308830) and an ERC Synergy Award (“ImPACT”).

14 Rely/Guarantee Reasoning for Asynchronous Programs

References
1 M. Abadi and L. Lamport. Composing specifications. In J.W. de Bakker, W.-P. de Roever,

and G. Rozenberg, editors, Stepwise Refinement of Distributed Systems: Models, Formal-
ism, Correctness, Lecture Notes in Computer Science 430, pages 1–41. Springer-Verlag,
1990.

2 M. Abadi and L. Lamport. Conjoining specifications. ACM Transactions on Programming
Languages and Systems, 17(3):507–534, 1995.

3 M. Barnett, B.-Y. Evan Chang, R. DeLine, B. Jacobs, and K.R.M. Leino. Boogie: A
modular reusable verifier for object-oriented programs. In FMCO 2005, pages 364–387,
2005.

4 P. Baudin, F. Bobot, L. Correnson, and Z. Dargaye. WP Plug-in Manual, February 2014.
Version 0.8 for Neon-20140301.

5 P. Baudin, P. Cuoq, J.-C. Filliâtre, C. Marché, B. Monate, Y. Moy, and V. Prefosto. ACSL:
ANSI/ISO C Specification Language. Version 1.8 – Neon-20140301.

6 P. Cuoq, F. Kirchner, N. Kosmatov, V. Prevosto, J. Signoles, and B. Yakobowski. Frama-C
- A software analysis perspective. In SEFM 2012, pages 233–247, 2012.

7 E. D’Osualdo, J. Kochems, and C.-H. L. Ong. Automatic verification of Erlang-style con-
currency. In Proceedings of the 20th Static Analysis Symposium, SAS’13. Springer-Verlag,
2013.

8 J. Esparza, R. Ledesma-Garza, R. Majumdar, P. Meyer, and F. Niksic. An SMT-based
approach to coverability analysis. In CAV 2014, volume 8559 of Lecture Notes in Computer
Science, pages 603–619. Springer, 2014.

9 J. Fischer, R. Majumdar, and T.D. Millstein. Tasks: language support for event-driven
programming. In PEPM 2007, pages 134–143. ACM, 2007.

10 C. Flanagan, S.N. Freund, and S. Qadeer. Thread-modular verification for shared-memory
programs. In ESOP 2002, pages 262–277, 2002.

11 P. Ganty and R. Majumdar. Algorithmic verification of asynchronous programs. ACM
Trans. Program. Lang. Syst., 34(1):6, 2012.

12 S. Grebenshchikov, N.P. Lopes, C. Popeea, and A. Rybalchenko. Synthesizing software
verifiers from proof rules. In PLDI 12, pages 405–416. ACM, 2012.

13 A. Gupta, C. Popeea, and A. Rybalchenko. Predicate abstraction and refinement for veri-
fying multi-threaded programs. In POPL 11, pages 331–344. ACM, 2011.

14 T.A. Henzinger, R. Jhala, and R. Majumdar. Race checking by context inference. In PLDI
2004, pages 1–13. ACM, 2004.

15 R. Jhala and R. Majumdar. Interprocedural analysis of asynchronous programs. In POPL
2007, pages 339–350. ACM, 2007.

16 C.B. Jones. Tentative steps toward a development method for interfering programs. ACM
Transactions on Programming Languages and Systems, 5(4):596–619, 1983.

17 Alexander Kaiser, Daniel Kroening, and Thomas Wahl. Efficient coverability analysis by
proof minimization. In Proceedings of the 23rd International Conference on Concurrency
Theory, CONCUR’12, pages 500–515. Springer-Verlag, 2012.

18 H.C. Lauer and R.M. Needham. On the duality of operating system structures. SIGOPS
Oper. Syst. Rev., 13(2):3–19, 1979.

19 N. Mathewson. Fast portable non-blocking network programming with Libevent. http:
//www.wangafu.net/~nickm/libevent-book/. Accessed: 2015-03-12.

20 K. Sen and M. Viswanathan. Model checking multithreaded programs with asynchronous
atomic methods. In CAV ’06, volume 4144 of LNCS, pages 300–314. Springer, 2006.

http://www.wangafu.net/~nickm/libevent-book/
http://www.wangafu.net/~nickm/libevent-book/

	Introduction
	Main Idea
	Technical Details
	SLAP: Syntax and Semantics
	Rely/Guarantee Decomposition

	Rely/Guarantee in Practice
	Implementation for Libevent
	Generic Rely/Guarantee Predicates
	Limitations

