COCV 2006

Structuring Optimizing Transformations and
Proving Them Sound

Aditya Kanade! Amitabha Sanyal? Uday Khedker?

Dept. of Computer Science and Engineering, IIT Bombay.

Abstract

A compiler optimization is sound if the optimized program that it produces is se-
mantically equivalent to the input program. The proofs of semantic equivalence are
usually tedious. To reduce the efforts required, we identify a set of common trans-
formation primitives that can be composed sequentially to obtain specifications of
optimizing transformations. We also identify the conditions under which the trans-
formation primitives preserve semantics and prove their sufficiency. Consequently,
proving the soundness of an optimization reduces to showing that the soundness
conditions of the underlying transformation primitives are satisfied.

The program analysis required for optimization is defined over the input program
whereas the soundness conditions of a transformation primitive need to be shown
on the version of the program on which it is applied. We express both in a temporal
logic. We also develop a logic called temporal transformation logic to correlate tem-
poral properties over a program (seen as a Kripke structure) and its transformation.

An interesting possibility created by this approach is a novel scheme for validating
optimizer implementations. An optimizer can be instrumented to generate a trace
of its transformations in terms of the transformation primitives. Conformance of the
trace with the optimizer can be checked through simulation. If soundness conditions
of the underlying primitives are satisfied by the trace then it preserves semantics.

Key words: Optimization specification, Formal verification,
Translation validation

1 Introduction

Modern compilers are equipped with sophisticated optimizations. An opti-
mization is sound if the optimized program that it produces is semantically
equivalent to the input program. The issue of soundness of optimizers has

! Email: aditya@cse.iitb.ac.in
2 Email: as@cse.iitb.ac.in
3 Email: uday@cse.iitb.ac.in
This paper is electronically published in

Electronic Notes in Theoretical Computer Science
URL: www.elsevier.nl/locate/entcs

KANADE, SANYAL, AND KHEDKER

been addressed as verification of specifications [9,10] and translation valida-
tion [11,18]. The former approach seeks to guarantee soundness of specifica-
tions but does not address soundness of their implementations, while the latter
approach checks the soundness of an optimizer on a run-by-run basis. The
latter approach requires some heuristics [11] or hints from the compiler [18].

The proofs of semantic equivalence are usually tedious. To reduce the
efforts required, we identify a set of common transformation primitives that
can be composed sequentially to obtain specifications of optimizing trans-
formations. We also identify the conditions under which the transformation
primitives preserve semantics. For example, common subexpression elimina-
tion, partial redundancy elimination, and loop invariant code motion replace
some occurrences of an expression by a variable. Although they may select
different application points, the same soundness condition has to be satisfied
at each of the application points: The variable must have the same value as
that of the expression being replaced. Such a soundness condition guaran-
tees semantics preservation under the respective transformation is a one time
proof and is independent of any optimization. The primitives are small-step
transformations as compared to the optimizations and hence the semantics
preservation proofs are easier. This approach reduces proving the soundness
of an optimization to merely showing that the soundness conditions of the
underlying transformation primitives are satisfied. This is much simpler than
directly proving semantics preservation for each optimization.

We specify the program analysis and the soundness conditions in first-order
logic. They are interpreted over control flow representation of programs. The
properties which relate information along control flow paths are expressed in
a temporal logic. The program analysis is defined over the input program.
Depending on its position in the transformation sequence, the soundness con-
ditions of a transformation primitive need to be shown either on the input
program or its appropriate transformation. We develop a logic called Tem-
poral Transformation Logic (TTL) to correlate temporal properties over a
program seen as a Kripke structure and its transformation.

Based on our approach of identifying transformation primitives and their
soundness conditions, we suggest a novel validation scheme: An optimizer can
be instrumented to generate a trace of its execution as a sequence of appro-
priately instantiated primitives. An execution preserves semantics if (1) the
optimized program matches the output obtained after simulating the trace
on the input program and (2) the soundness conditions of the transformation
primitives used in the trace are satisfied.

The rest of the paper is organized as follows: Section 2 introduces the
specification mechanism. Section 3 describes the verification technique and
introduces TTL. Section 4 proposes a validation scheme. Section 5 describes
how proof obligations can be automatically generated from the specifications
of optimizations in PVS. Section 6 reviews related work. Section 7 concludes
the paper and proposes future directions.

2

KANADE, SANYAL, AND KHEDKER
2 Specifying Optimizations

The optimizations are specified over an abstraction based on control flow graph
representation of three-address code. We use PVS [14] as the specification
and verification framework. PVS language is based on typed higher-order
logic [13]. We explain PVS language features wherever required.

2.1 Abstraction of Programs

A program is a directed graph with a single entry and a single exit. Each node
denotes a control location called a program point and holds a statement. Each
program point has at least one successor.? The entry point has no predeces-
sors whereas the exit point has only a self-loop. Variables and constants form
data part of a program. At present, we do not consider arrays and point-
ers. The expressions are formed from operators and variable or constant type
operands. The operators are uninterpreted functions. We consider four kinds
of statements: (1) SKIP is a “no-operation”, (2) ASSIGN(Lhs: wvariable, Rhs:
expression) is an “assignment”, (3) ITE(Condition: operand, Tb, Fb: point) is
an “if-then—else” statement where Tb and Fb are respectively targets of “if”
and “else” branches, and (4) HALT halts the execution of a program. The
“goto”’s are modeled as directed edges.
The type program is defined as a record with four fields:

program: TYPE = [# cfg: Gmph[pomﬂ, entry, exit: (cfg‘S),
L: [(cfg'S) — statement| #]

cfg is the control flow graph whose nodes belong to a set of program points S
and edges are given by a relation 7: S x S. They are respectively referred to
as cfg'S and cfg'T. entry and exit are respectively entry and exit points. The
function L maps a program point in cfg‘S to a statement.

The abstraction is well-defined if its control flow and contents are con-
sistent with each other. For example, if the statement at program point p
is ITE(c, p1,p2) then p; and p, should be the only successors of p. These
constraints are satisfied by a predicate subtype (Program) of program where
Program: program — bool (definition omitted). In the running text, a program
which satisfies this predicate is simply referred to as “program”.

An aside on PVS typing. Given a type T and a predicate ¢ : T" — bool,
(p) denotes a predicate subtype of T. It is the set of entities from 7' that
satisfy the predicate ¢. PVS allows dependent types where the types are
defined in terms of the components declared earlier. (cfg‘S) is a dependent
predicate subtype indicating the set of program points S of cfg. Though cfg
and S are field names, they are italicized when used in a type declaration. As
a convention, we always italicize the types.

4 This is required for modeling programs as Kripke structures and is explained in section 2.2.

3

KANADE, SANYAL, AND KHEDKER

2.2 Computational Tree Logic with Branching Past

We use computational tree logic with branching past (CTLy,) [8] for specifying
global program properties. Kripke structures are used as models for CTLy,.
A Kripke structure is a directed graph whose nodes are labeled with atomic
propositions. Formally, a Kripke structure M = (S, R, P, L), where S is a
finite non empty set of states. R :.S x S is a transition relation which is total
in its first element. To guarantee totality, in the program abstraction, every
program point is required to have a successor. P is a set of atomic propositions.
L : S — 2 is a labeling function which associates states to propositions.

We view programs as Kripke structures. The program points cfg'S form
the set of states S. The set of edges cfg'r form the transition relation R. The
propositions are generalized to predicates over program points.

CTLy, has propositional connectives and temporal operators. The future
operators describe properties of descendants of a state. The past operators
describe properties of ancestors of a state. Consider formulae ¢ and . The
future operators are X(¢) (“neXt time ¢ holds”), U(p, 1) (“p holds Until ¢”),
and F(p) (“¢ holds sometime in Future”). The past operators are Y () (“p
holds Yesterday”), S(¢, 1) (“¢ holds Since ¢”), and P(¢) (“p holds sometime
in Past”). They are prefixed with path quantifiers E (“for some path”) or A
(“for all paths”). For example, AU(p, ¥) states that “along all (forward) paths
¢ holds until ¢” or EP(y) states that “along some (backward) path ¢ holds
sometime”. Since we transform a program step-by-step, we have different
versions of it. To distinguish between the interpretations of CTL, formulae
over different programs, we parameterize them with respective programs.

2.3 Specifying Analyses

We use loop invariant code motion to explain the specification mechanism.
We first specify analyses for identifying loops and determining whether an
expression is invariant within a loop. The specifications are given in Fig. 1.
For readability, we do not explicate the types. However, they are explained
in the running text. Some interesting type signatures are inserted in the
specification as comments, starting with %.

Consider a program prog and an expression e in it. The expression e is
transparent at a program point p if none of its operands is assigned to at p.
This is defined as the predicate Transp and is in curried form. Assign? is the
recognizer for assignment statements. Lhs is the accessor for left-hand side
variable of an assignment. VOperands returns the set of variable type operands
of an expression. The expression e is locally anticipatable at a program point
p if the statement at p is an assignment whose right-hand side (accessible by
Rhs) is e. This is defined as the predicate Antloc.

We now specify control flow analyses for identifying loops. A program
point p dominates a program point q if along all backward paths from q, p
is reachable. This property is defined as the predicate Dom. Let xs be a set

4

KANADE, SANYAL, AND KHEDKER

Transp(prog, e)(p):bool = Assign?(prog‘L(p)) = Lhs(prog‘L(p)) ¢ VOperands(e)
Antloc(prog, e)(p):bool = Assign?(prog‘L(p)) A Rhs(prog‘L(p)) =e

Dom(prog, a)(p):bool = AP(prog, (p))(q)

DomS(prog,xs)(p):bool = V(q:(xs)):Dom(prog,q)(p)

Scc(prog, xs) : bool = VY(p,q:(zs)):EU(prog,xs, (q))(p)

Loop(prog)(xs) : bool = Scc(prog,xs) A 3(p:(zs)):DomS(prog,xs)(p)A

V(p:(zs)):~DomS(prog,xs)(p) = AY (prog,xs)(p)
Y%Header(prog: (Program),xs: (Loop(prog)))(p: (prog‘cfg‘S)) : bool
Header(prog,xs)(p): bool = xs(p) A DomS(prog,xs)(p)
%LInv(prog: (Program),xs: (Loop(prog)))(e : (expressions(prog))): bool
Linv(prog, xs)(e): bool = V(p: (zs)): Transp(prog, e)(p) A (Header(prog, xs)(p)
= AU(prog, Transp(prog, e), Antloc(prog, e))(p))
%lnvs(prog: (Program), xs: (Loop(prog)), e: (LInv(prog, zs))) : set[(zs)]
Invs(prog, xs, e) : set [(zs)] = {p:(zs) | Antloc(prog,e)(p)}

Fig. 1. Specification of program analyses pertaining to Loop Invariant Code Motion

of program points of prog. A program point p dominates xs if it dominates
each member of xs. This is defined as the predicate DomS. The set xs is a
strongly connected component if for every pair of program points in it there is
a (non-empty) directed path whose intermediate program points also belong
to xs. This is defined as the predicate Scc. A set of program points xs is a Loop
if it is a strongly connected component, there is a program point in xs which
dominates it, and the predecessors of other program points of xs are also in xs.
The program point in a loop which dominates it is called its Header.

Let xs be a loop in program prog. An expression e is invariant within xs if
it is transparent at all program points of xs and is anticipatable at the Header
of xs, that is along all forward paths from the header, e is transparent until it
is locally anticipatable. This is given as the predicate Linv. The function Invs
gives program points of xs that contain occurrences a loop invariant expression
e. These occurrences evaluate to the same value in every iteration and hence
can be moved out of the loop.

2.4 Specifying Transformations

Consider a program progl shown in Fig. 2. The set xs = {2,3,4} is a Loop
with program point 2 as its Header. According to the analyses defined in
Fig. 1, the expression a * b is invariant within xs and is locally anticipatable
at program point 3. We want to hoist a* b to the incoming edges of the
loop header except along the looping edge. This is done by transforming the
program step-by-step as follows:

KANADE, SANYAL, AND KHEDKER

F.)rc.)g.Q p.)r(.)g.?: optimiz.e(.i iorogram

Fig. 2. An example of Loop Invariant Code Motion

(i) Split the edge (1,2) by adding a new program point, say 5, containing a
SKIP statement. A new program point is distinct from program points
of the subject program.

(ii) Let t be a new variable with respect to prog2. A new variable does not
appear anywhere in the subject program. Insert an assignment statement
t = a * b (simplified notation for ASSIGN(t,a * b)) at program point 5.

(iii) Replace the occurrence of a * b at program point 3 by the variable t.

The transformation is formally specified in Fig. 3. Let progl be a program,
xs be a loop in it, and e be an invariant expression within xs. The predicate hdr
denotes the headers of xs. By definition, a loop has only one header. The set
predsNotInLoop denotes predecessors of the header which are not in xs. The
function SE is a transformation primitive. Given a program and two sets
of program points, it splits the edges going from the program points in the
first set to those in the second set. It inserts new program points containing
SKIP statements. Here, it takes the program progl and splits the edges from
predsNotInLoop to the loop header. The transformed program is prog?2.

%LICM (progl: (Program), xs: (Loop(progl)),e: (LInv(progl, zs))): (Program)
LICM(progl,xs,e): (Program) =

LET hdr = Header(progl, xs),
preds = EX(progl, hdr),
predsNotIinLoop = (preds \ xs),
prog2 = SE(progl, predsNotInLoop, hdr),
invoccurs = Invs(progl, xs, e),
t = NEWVAR(prog2),
newpoints = (prog2‘cfg'S \ proglicfg'S),
prog3 = |A(prog2, newpoints, t, €)

N RE(prog3, invoccurs, t)

Fig. 3. Specification of Loop Invariant Code Motion transformation

6

KANADE, SANYAL, AND KHEDKER

RE(prog, points,v): (Program) =
(# cfg := prog'cfg, entry := prog'entry, exit := prog‘exit,
L = Ap:(prog‘cfg*S)):
IF (p € points) THEN ASSIGN (Lhs(prog‘L(p)),BASE(V(v)))
ELSE prog'L(p) ENDIF #)

SoundRE(prog, points,v): bool =

V(p: (points)): Assign?(prog‘L(p)) A
LET e = Rhs(prog‘L(p)) IN v & VOperands(e) A
AY (prog, AS(prog, TranspNDef (prog, e, V) , AssignStmt(prog, v, €))) (p)

Fig. 4. Definition of transformation primitive RE and its soundness conditions

Let invoccurs be the program points in xs where the expression e occurs.
They are identified over progl. Let t be a new variable w.r.t. prog2. newpoints
are the new program points inserted by the first transformation. In prog2,
they are predecessors of the loop header but are not in the loop. The function
IA is a transformation primitive which takes a variable a and an expression b
and inserts an assignment statement ASSIGN(a, b) at the given program points
in the subject program. Here, it inserts ASSIGN(t,e) at newpoints in prog2.
The resulting program is prog3.

The function RE is a transformation primitive which takes a program and
replaces expressions at the given program points by a given variable. Here, it
transforms program prog3 by replacing invariant occurrences of e at invoccurs
by the variable t. This accomplishes loop invariant code motion.

2.5 Defining Transformation Primitives and their Soundness Conditions

The transformation primitives are usually easy to define and their soundness
conditions simple to characterize. The transformation primitive RE is defined
in Fig. 4. It replaces expressions at program points points in a program prog
by a base expression constructed from a variable v. The constructor BASE
gives an expression which merely consists of an operand. The constructor V
constructs a variable type operand. The transformation primitive RE modifies
only labeling function L of the subject program. The last transformation
depicted in Fig. 2 is an application of RE transformation.

The soundness conditions of RE are defined as the predicate SoundRE in
Fig. 4. Let p € points. The transformations represented by RE are sound if:
(1) p contains an assignment statement. (2) If e is the expression computed
at p then the given variable v is not its operand. (3) Along all backward paths
starting with the predecessors of p, the expression e is transparent and either
the variable v is not defined or the expression assigned to it is e (denoted
by TranspNDef) until a statement assigning e to v (denoted by AssignStmt) is
encountered. This ensures that along all paths reaching p, the variable v has
the same value as the expression e. In Appendix A, we prove that given the
soundness conditions soundRE, RE preserves semantics of the input program.

7

KANADE, SANYAL, AND KHEDKER

3 Verifying Soundness of the Specifications

In the previous section, we identified some primitive transformations and ex-
pressed the optimizing transformations by composing them sequentially. We
discussed the conditions under which the primitives preserve semantics. In this
section, we discuss the verification scheme, TTL, and argue about soundness
of LICM specification given in Fig. 3.

3.1 Verification Scheme

Consider an optimizing transformation 7" defined in terms of the transforma-
tion primitives 17, - -« , Tj:

AN
T(Ml) =LET MQZTl(Ml, 7T1), e ,Mk :Tk—l(Mk—h 7Tk_1) IN Tk(Mk, 7Tk)

where M, is the abstraction of the input program. A transformation 7; is
applied to an abstraction M; at program points m;. Other parameters of the
transformation primitives are implicit.

Let ¢1, ..., @k be the soundness conditions of the primitives 71, ..., Ty. If a
transformation primitive T; is applied to a subset of ¢;(M;), then T; preserves
semantics of M;. Therefore, if we show that m; C ¢;(M;), 1 <i < k, then each
of the constituent transformations preserves semantics. This implies that the
overall transformation 1" also preserves semantics.

The program points 7; are identified over some program M;, j < ¢, whereas
the safe application points ¢;(M;) are identified over M; only. Thus, we have to
correlate program properties which define these points across different versions
of the input program. To correlate temporal properties in such a manner, we
develop a logic called temporal transformation logic (TTL). It relates temporal
formulae whose outermost operators are the same. To prove the non-temporal
properties, we use properties of the preceding transformations. In section 3.4,
we discuss two non-temporal proof obligations viz. (A) and (B) and argue as
to how they can be discharged.

3.2 Temporal Transformation Logic

A K-transformation f : M x2% — M where M is the set of Kripke structures.
Let M = (SR, P,L') = f(M,7) where 7 C S. The K-transformations
are classified depending on how they change structure of the input Kripke
structure. Below we discuss a transformation and an inference rule associated
with it that is relevant to this paper.

Consider two states ¢ and j of M such that ¢ is a predecessor of j. We
want to add a new state k as a predecessor of j and a successor of . The new
state k is distinct from the states of M. We add an edge from i to k& and an
edge from k to j. The edge from i to j is deleted whereas other edges of M
are preserved. We call this transformation node addition or edge splitting.

As stated in section 2.2, we parameterize CTL formulae with Kripke struc-

8

KANADE, SANYAL, AND KHEDKER

tures to distinguish between their interpretations on different Kripke struc-
tures. Let N be an atomic proposition that denotes the new states. Let A
denote EX, AX, EY, and AY. Let V denote EU, AU, ES, and AS. The trans-
formed Kripke structure M’ is obtained by adding some states to M. The rule
NA gives inference rules for node addition transformation.

- oVN = ¢
- —_— !
(NA) (0 (0
o AMp) = AM,¢)
FV(M o) = V(M ¢)
Lemma 3.1 NA s sound.
Proof. Available in [7] O

If there is no structural change involved in a transformation then also
above rule can be used. The set of new states N is empty in that case and
the implication N = ¢’ is vacuously true.

TTL has inference rules for other classes of transformations like node split-
ting, node merging, node deletion, edge addition, and edge deletion. These
can be composed to express various kinds of transformations. More on TTL
is available in [7].

3.3 Why does LICM Preserve Semantics?

The soundness of LICM specified in Fig. 3 can be informally justified as follows:

(i) The first transformation SE does not add or delete any control flow paths
and inserts just SKIP statements. Hence the transformed program prog2
is semantically equivalent to progl.

(ii) Since t is a new variable w.r.t. prog2, it does not modify any reaching
definitions in prog2. The expression e is anticipatable at the loop header.
The first transformation inserts newpoints as predecessors of the loop
header. Hence the second transformation which inserts an assignment
ASSIGN(t, e) at newpoints does not give rise to computation of any new
value along any path and thus preserves semantics of prog?2.

(iii) In the second transformation, an assignment ASSIGN(t,e) is inserted
along all incoming edges of the loop header except the looping edge.
Within the loop, neither the variable t nor any of the variable operands
of the expression e are assigned. Hence t has the same value as e along
all incoming paths to a program point in invoccurs. Therefore, the occur-
rence of e at such a program point can be replaced by t while preserving
semantics of prog3.

KANADE, SANYAL, AND KHEDKER

3.4 An Example Proof of Soundness

We now prove soundness of the last transformation RE in LICM which is ap-
plied on prog3. It replaces the occurrences of the loop invariant expression e
at the program points invoccurs within the loop xs with the variable t. We
have to show that SoundRE(prog3, invoccurs, t) holds.

Let p € invoccurs and € = Rhs(prog3‘L(p)). We have to show that p which
is a program point in progl is also in prog3. The program points invoccurs are
defined over progl. The same program points are identified in the transformed
programs prog2 and prog3 by invoccurs since the transformations do not delete
any program points. Similar is the case for xs, hdr, and newpoints. PVS gen-
erates type correctness conditions (TCCs) for them. They are discharged by
rewriting the definitions of the transformation primitives. From the definition
of SoundRE in Fig. 4, we have the following proof obligations:

(A) Assign?(prog3‘L(p)))

(B) t € VOperands(e')

(C) AY (prog3,AS(prog3, TranspNDef (prog3, €, t),AssignStmt(prog3,t,e')))(p)

Proofs of (A) and (B):

(A) is proved by rewriting the definitions of the first two transformations
SE and IA. SE inserts skip statements at the new points newpoints and IA
replaces these skips by assignments ASSIGN(t,e). From the definitions of Invs,
LInv, and Antloc in Fig. 1, we deduce that in progl, the statement at p is
an assignment statement. Since the first two transformations do not change
contents of p, in prog3 it holds the same assignment statement as in progl.

Clearly, the expression € is same as the expression e = Rhs(progl‘L(p)).
Since t is a new variable w.r.t. prog2, it cannot be an operand of any expression
in prog2. prog2 is a transformation of progl and e is an expression in progl,
therefore, t ¢ VOperands(e). (B) follows because e = €.

Proof of (C):

Since e = €/, we replace € by e in (C). We have to show that in prog3, for
all predecessors of p along all backward paths, the expression e is transparent
and either the variable t is not defined or the expression assigned to it is e
until a statement assigning e to t is encountered.

Auxiliary Results:

(i) The first transformation SE inserts newpoints as predecessors to the loop
header by splitting its incoming edges except the looping edge. The sec-
ond transformation |A does not change control flow of prog2. Using NA,

hdr = AY(prog3, newpoints V xs) (1)

(ii) From the definition of Llnv in Fig. 1, the expression e is transparent
in the loop xs in progl. The first transformation SE inserts only SKIP
statements. The second transformation IA inserts statements assigning
the expression e to the new variable t at newpoints only. Hence

10

KANADE, SANYAL, AND KHEDKER

xs V newpoints = TranspNDef(prog3, e, t) (2)
newpoints <= AssignStmt(prog3,t,e) (3)
(iii) The loop header belongs to the loop: hdr = xs. From (2),
hdr = TranspNDef(prog3,e,t) (4)
From (1) and (3),
hdr = AY(prog3, AssignStmt(prog3,t,e) V xs) (5)

(iv) Our program abstraction has a unique entry. It has no incoming edges
and is reachable along all backward paths. Since in CTLy, the past is
finite, we have the following (derived) proof rule:

(6= ASM, 0, ¥)) A (Y = ¢ NAY(M, aV§)) F (5 = AS(M, ¢, @) (6)

Main Derivation:

{Program points in the loop xs are dominated by the loop header hdr in progl.}
xs = AS(progl, xs, hdr)

{The first transformation SE inserts newpoints. Using NA,}
xs = AS(prog2, xs VV newpoints, hdr)

{The second transformation IA does not change control flow of prog2.}
xs = AS(prog3, xs VV newpoints, hdr)

{From (2), (3), (4), and (5), using (6)}
xs = AS(prog3, TranspNDef (prog3, e, t), AssignStmt(prog3,t,e))

{All predecessors of a program point in xs belong to xs or it is the loop header.}
xs = AY(prog3, AS(prog3,TranspNDef (prog3, e, t),AssignStmt(prog3, t,e)))

By definition, invoccurs = xs. Since p € invoccurs,

AY(prog3, AS(prog3, TranspNDef (prog3, e, t),AssignStmt(prog3,t,e)))(p) (7)

Similarly, it can be shown that the soundness conditions of other transfor-
mations are satisfied by LICM specification.

4 A Possible Approach for Validating Optimizers

While implementations can be validated against their provenly sound specifi-
cations, our approach of identifying transformation primitives and their sound-
ness conditions suggests a novel validation scheme shown in Fig. 5: Although
an optimizer may not have been implemented using the transformation primi-
tives, it can be instrumented to generate a trace of its execution as a sequence
of appropriately instantiated primitives. For example, the trace of the trans-
formations in Fig. 2 is SE({1},{2}); IA({5},t,a * b); RE({3},1).

The validation scheme consists of two parts: (1) The input program is
abstracted and its transformed version is derived by simulating the trace on
it. If the abstraction of the optimized program matches this abstraction then
the trace is faithful to the optimization performed. Two abstractions match

11

KANADE, SANYAL, AND KHEDKER

(instrumented)
r (i
abstraction trace: o
function Ti(m1); s T (mk);

. -~
_ - - -

Fig. 5. Validate an optimization against a generated trace

each other iff their control flow graphs are isomorphic and contents at corre-
sponding program points are same, modulo a globally consistent renaming of
variables. (2) It is checked whether the soundness conditions of the transfor-
mation primitives used in the trace are met on the respective abstractions.
This establishes whether the trace preserves semantics. If both these checks
succeed then the optimizer preserves semantics of the input program.

This approach does not require any knowledge of the analysis employed in
the optimizer because it directly uses the application points provided by the
optimizer. Since the program abstractions are finite, it is reasonable to assume
existence of an automatic checker for the soundness conditions. Such a checker
along with a simulator, an implementation of the abstraction function, and a
procedure for matching abstractions constitute the trusted computing base.

5 Automatically Generating Proof Obligations

We use PVS for specifying optimizations and verifying them. Emacs provides
a front-end for PVS. We have built an Emacs based utility for automatically
generating soundness proof obligations from the specifications.

PVS parses and typechecks the specifications. It annotates the parse tree
with typing information and keeps it in Common Lisp Object System (CLOS)
format in PVS ILisp. PVS ILisp process runs as a subprocess of Emacs Lisp
interpreter [2]. We probe the CLOS objects through Emacs interpreter using
pvs-send-and-wait command. We identify the transformation primitives and
the context in which they are used by walking the annotated parse tree of the
specification. We then generate a PVS theory containing the soundness proof
obligations for each of the transformation primitives used with the appropriate
context. These proof obligations need to be discharged in order to prove that
the optimization specification is sound. We are trying to develop high-level
proof strategies so that these proof obligations can be discharged easily.

12

KANADE, SANYAL, AND KHEDKER

6 Related Work

Lacey et al. [9] specify optimizations as conditional rewrites whose enabling
conditions are expressed in a temporal logic. They manually show the semantic
equivalence of input and optimized programs. The rewrites are composed
simultaneously. Due to this, as the number of rewrites increase, the proofs of
semantic equivalence would get more complicated. Although program analyses
are specified as temporal formulae, they prove semantic equivalence and hence
cannot use temporal logic in the proofs. We also specify program analyses
using a temporal logic. However, our transformation primitives are not general
rewrites. Hence, it is possible to define their soundness conditions. In our
case, the proofs are much simpler owing to the fact that common patterns of
semantic equivalence proofs are discharged separately and only once for each
primitive. The primitives are composed sequentially and hence increase in the
number of transformations does not affect the provability adversely.

Lerner et al. [10] follow an approach similar to Lacey et al. [9]. They
use a restricted temporal logic to express analyses and require a property
called witness for correlating analysis with semantics of the program. They
can then automatically derive and discharge the required proof obligations.
We also generate proof obligations automatically. Though our proofs are not
automated, they are mechanizable to a large extent.

The translation validation approaches check semantic equivalence of in-
put and optimized programs. They either use heuristics to guess the optimiza-
tions performed [11] or expect program annotations from compilers [15,18,19,1].
We do not address validation in as broad a sense as them and hence alleviate
the checking of semantic equivalences of input and optimized programs.

Goldberg et al. [5] present a proof rule for reasoning about loop optimiza-
tions. They develop heuristics to determine which optimizations occurred and
synthesize intermediate versions of the input program which may not have
been generated by the compiler. This is similar to the approach in Fig. 5.
However, we require an optimizer to generate a trace and check soundness
conditions of the primitives used in it instead of semantics preservation.

The Verifix project [4,6] addresses the issue of construction of correct com-
pilers. They distinguish between correctness of specifications and their imple-
mentations. They also consider the correctness when the machine resources
are finite. In [3], the concept of program checking with certificates is intro-
duced and applied to optimizing compiler back-ends. The compiler generates
a trace of its search for optimal target code as a certificate of correctness.

Certifying compilers [12] generate type specifications and code annotations
in addition to assembly code. This additional information is used to prove
type and memory safety of target code. The proof obligations are generated,
discharged, and checked outside of the compiler. [17,16] propose how compilers
themselves can generate correctness proof for each run. These approaches
require extensive instrumentation of compiler.

13

KANADE, SANYAL, AND KHEDKER

7 Conclusions and Future Work

We address issues regarding soundness of optimizations in two steps. We first
identify transformation primitives common to several optimizations and define
sufficient conditions for ensuring soundness of these primitives. We then spec-
ify an optimizing transformation as sequential compositions of appropriately
chosen transformation primitives. Consequently, proving the soundness of an
optimization reduces to showing that soundness conditions of the underlying
transformation primitives are satisfied. This reduces the overall verification
efforts: The proofs of semantic equivalence need to be done only once for
each primitive and are independent of any particular optimization. The prim-
itives are much simpler than the optimizing transformations and hence the
semantics preservation proofs are easier.

Based on our approach of identifying transformation primitives and their
soundness conditions, we suggest a novel validation scheme: An optimizer
can be instrumented to generate a trace of its transformations in terms of
the transformation primitives. Conformance of the trace with the optimizer
can be checked through simulation. If soundness conditions of the underlying
primitives are satisfied by the trace then it preserves semantics.

At present, our method can handle optimizations based on bit vector anal-
yses. We are developing TTL inference rules for several kinds of transfor-
mations. As part of future work, we would like to apply them for proving
soundness of control flow optimizations that may change program structures
significantly like loop unrolling, loop fusion, etc. Our framework needs to
be extended for handling optimizations like constant propagation which are
based on non-bit vector analyses.

Acknowledgments
Authors wish to thank Supratik Chakraborty for many insightful discussions.
Authors are thankful to César Munoz for clarifying PVS related doubts.

References

[1] C. Barrett, Y. Fang, B. Goldberg, Y. Hu, A. Pnueli, and L. Zuck. TVOC:
A translation validator for optimizing compilers. In Proceedings of CAV’05,
volume 3576 of LNCS, pages 291-295. Springer-Verlag, July 2005.

[2] J. Crow, S. Owre, J. Rushby, N. Shankar, and D. Stringer-Calvert. Evaluating,
testing, and animating PVS specifications. Technical report, Computer Science
Laboratory, SRI International, Menlo Park, CA, March 2001.

[3] S. Glesner. Using program checking to ensure the correctness of compiler
implementations. Journal of Universal Computer Science, 9(3):191-222, 2003.

[4] W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. von Henke, U. Hoffmann,
H. Langmaack, H. Pfeifer, H. Ruess, and W. Zimmermann. Compiler

14

KANADE, SANYAL, AND KHEDKER

correctness and implementation verification: The Verifix approach. In poster
session of CC’96. Technical Report LiTH-IDA-R-96-12, Linkping, Sweden, 1996.

[5] B. Goldberg, L. Zuck, and C. Barrett. Into the loops: Practical issues in
translation validation for optimizing compilers. In Proceedings of COCV’04,
volume 132(1) of ENTCS, pages 53-71. Elsevier, May 2005.

[6] G. Goos and W. Zimmermann. Verification of compilers. In Ernst-Riidiger
Olderog and Bernhard Steffen, editors, Correct System Design, volume 1710 of
LNCS, pages 201-230. Springer, 1999.

[7] A. Kanade, A. Sanyal, and U. Khedker. Temporal transformation logic.
Technical Report TR-CSE-001-06, CSE, IIT Bombay, January 2006. Available
at: http://www.cse.iitb.ac.in/~aditya/reports/TR-TTL.ps.

[8] O. Kupferman and A. Pnueli. Once and for all. In Proceedings of LICS’95,
pages 25-35. IEEE Computer Society, 1995.

[9] D. Lacey, N. D. Jones, E. Wyk, and C. Frederiksen. Proving correctness of
compiler optimizations by temporal logic. In Proceeding of POPL’02, pages
283-294. ACM Press, 2002.

[10] S. Lerner, T. Millstein, and C. Chambers. Automatically proving the
correctness of compiler optimizations. In Proceedings of PLDI’03, pages 220—
231. ACM Press, 2003.

[11] G. Necula. Translation validation for an optimizing compiler. In Proceedings
of PLDI’00, pages 83-94. ACM Press, 2000.

[12] G. Necula and P. Lee. The design and implementation of a certifying compiler.
In Proceedings of PLDI’98, pages 333-344. ACM Press, June 1998.

[13] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS
Language Reference. CSL, SRI International, Menlo Park, CA, September 1999.

[14] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-Calvert. PVS System
Guide. CSL, SRI International, Menlo Park, CA, September 1999.

[15] A. Pnueli, M. Siegel, and O. Shtrichman. Translation validation: From SIGNAL
to C. In E.-R. Olderog and B. Steffen, editors, Correct System Design, volume
1710 of LNCS State-of-art Survey, pages 231-255. Springer Verliag, 1999.

[16] A. Poetzsch-Heffter and M. Gawkowski. Towards proof generating compilers.
In Proceedings of COCV’04, volume 132(1) of ENTCS, pages 37-51, 2005.

[17] M. Rinard and D. Marinov. Credible compilation with pointers. In Proceedings
of the FLoC Workshop on Run-Time Result Verification, July 1999.

[18] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A translation validator
for optimizing compilers. In Proceedings of COCV’02, volume 65(2) of ENTCS,
2002.

[19] L. Zuck, A. Pnueli, B. Goldberg, C. Barrett, Y. Fang, and Y. Hu. Translation
and run-time validation of loop transformations. Formal Methods in System
Design (FMSD), November 2005.

15

http://www.cse.iitb.ac.in/~aditya/reports/TR-TTL.ps

KANADE, SANYAL, AND KHEDKER

A Proof of Semantics Preservation for RE

Let Value be the domain of values that variables in a program can take. It
contains a special element true. A function [op] : Value™ — Value denotes
an n-ary operator op. A constant is a 0-ary operator. Consider a domain
Store = Variables(prog) — Value which denotes valuations of variables in a
program prog. A function [- | : Ezpressions(prog) x Store — Value evaluates
expressions in a program prog. Let o € Store.

[vlo =o(v) where v is a variable
[c]o = [c]] where c is a constant
[op(o1,...,02)]o =[op]([o1]o, ..., [on]o) where o4, ..., o, are operands

Definition A.1 (Statement Semantics.) Consider a program prog and a
domain State = (prog'S U {®}) x Store representing program states where
® is a special program point indicating termination, i.e., it does not hold
any statement. The state transition relation ~»: State x State defines how
statements affect the program state. Let p € prog'S and o € Store.

(i) If prog'L(p) = SKIP then (p,o) ~ (p’,o) where (p,p’) € prog‘cfg'r.

(i) If prog‘L(p) = ASSIGN(v, e) then (p, o) ~ (p/, o[v — [e]o]) where (p,p’) €
prog‘cfg't and ofv +— z] updates o by mapping v to z and keeping rest
of the mappings the same.

(iii) If prog'L(p) = ITE(C, py1, p2) then for [C]o = true, (p,o) ~ (p1,0); oth-
erwise (p,o) ~ (p2,0).

(iv) If prog‘L(p) = HALT then (p,0) ~ (®,0).

Definition A.2 (Program Trace.) Consider a program prog. A program
trace p is a possibly infinite sequence of states s; ~ -+ ~» s, ~ --- where
s1 = (prog‘entry, o1) is the initial state and oy is the initial store.

Definition A.3 (Semantic Equivalence.) Consider two programs progl
and prog2 whose state transition relations are ~» and ~' respectively. They
are semantically equivalent if for every finite trace p = s; ~ --- ~ (©, 0))) of
progl there exists a finite trace p’ = s} ~' -+~ ~' (©,0],) of prog2 such that
the initial and final stores are the same: o1 = 07 and o}, = 07,

Theorem A.4 If SoundRE(prog, points,v) defined in Fig. j holds then the
programs prog and RE(prog, points, v) are semantically equivalent.

Proof. Let progl = RE(prog, points, v) and ~' be its state transition relation.
Consider a finite trace p = 51 ~» - -+ ~ (©, g)y|) of prog. We show by induction
that for every prefix p; of length i < |p| of p there exists a prefix p} of a finite
trace p' = sy ~' - ~" (©,0,) of progl such that s; = s;.

Base Case. Consider the initial state s; = (prog‘entry, ;) of p. From the
definition of RE in Fig. 4, prog‘entry = proglentry. Since both programs have
the same variables, we can define 5| = (progl‘entry, oy).

16

KANADE, SANYAL, AND KHEDKER

Induction Hypothesis. Suppose for some k, 1 < k < |p|, and pj, there exists
pj. such that sy = s} where s, = (pg, 0x) and s, = (p},, 0%)-

Induction Step. Since the language is deterministic, every state has exactly
one successor state. Suppose s; ~ sp1 and s, ~' s;.,. We have to show
that spi1 = (Pr+1, Ok1) = Spy1 = (Phy1» Orpr)- We have two cases:

(A) Suppose pi & points. From the hypothesis, (pg,ox) = (p}, 0}.). From the
definition of RE in Fig. 4, prog‘L(px) = progl‘L(p},). Since RE does not change
the flow of control, for all p;, (pk,pj) € prog'cfg'r implies that (p},p;) €
proglicfg‘t. Thus, (Pr+1, Okt+1) = (Phy1s Opyr)-
(B) Suppose pi € points. py, satisfies the conditions stated in SoundRE. Let
prog‘L(px) = ASSIGN(x, e). From the hypothesis, (px, ox) = (p}, 0}.). From the
definition of RE in Fig. 4, progl‘L(p,) = ASSIGN(x, BASE(V(v))). From the
definition A.1, 041 = ox[x — [e]ox] and 07, = o} [x — [v]oy]. Therefore, we
have to show that [e]oy = [v]o}. Since oy = o}, this reduces to [e]oy = [v]oy.
From the definition of SoundRE in Fig. 4,

AY (prog, AS(prog, TranspNDef (prog, e, v), AssignStmt(prog,v,e)))(px) (A.1)

From the definition of statement semantics A.1, (py,...,px) iS a maximal
backward control flow path in prog. From (A.1),
37 :1 < j <k : AssignStmt(prog,v,e)(p;) A
(VI :j <1<k :TranspNDef(prog,e,v)(p:))

Let us instantiate the existential quantifier by 7 and skolemize the universal
quantifier by /. Following are the definitions of AssignStmt and TranspNDef:

AssignStmt(prog,v,e)(p;) 2 prog‘L(p;) = ASSIGN(v, e)

TranspNDef (prog, e, v)(p;) = Assign?(prog‘L(p;)) =
(Lhs(prog‘L(p;)) & VOperands(e) A
(Lhs(prog‘L(p:)) # v V Rhs(prog'L(p:)) = e))

From the statement semantics A.1,

0j+1=0,[v — [e]o;] which implies that [v]o;11 = [e]o; (A.2)
le]oii1 = [e]or and ([v]oir1 = [v]o; or [V]oir1 = [e]or) (A.3)
From the definition of SoundRE, v ¢ VOperands(e). Therefore, [e]o;i1 =
le]o;. From (A.2), [v]oj+1 = [e]oj+1. A program point p; is preceded either
by a program point p; or another program point p;. Therefore, [v]o; = [e]o;.
From (A.3), [v]oi41 = [e]ois1. Since 1 < j < k and j < [< k, we have

[vlowr = [e]ox. Therefore, opi1 = 0y 4-
Since RE does not change the flow of control, for all p;, (px, p;) € prog‘cfg'T
implies that (pj, p;) € progl'cfg't. Thus, (Pr+1,0k+1) = (Phr1s Thsr)- O

17

	Introduction
	Specifying Optimizations
	Abstraction of Programs
	Computational Tree Logic with Branching Past
	Specifying Analyses
	Specifying Transformations
	Defining Transformation Primitives and their Soundness Conditions

	Verifying Soundness of the Specifications
	Verification Scheme
	Temporal Transformation Logic
	Why does LICM Preserve Semantics?
	An Example Proof of Soundness

	A Possible Approach for Validating Optimizers
	Automatically Generating Proof Obligations
	Related Work
	Conclusions and Future Work
	References
	Proof of Semantics Preservation for RE

