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Abstract. In today’s API-rich world, programmer productivity depends
heavily on the programmer’s ability to discover the required APIs. In this
paper, we present a technique and tool, called MathFinder, to discover
APIs for mathematical computations by mining unit tests of API meth-
ods. Given a math expression, MathFinder synthesizes pseudo-code to
compute the expression by mapping its subexpressions to API method
calls. For each subexpression, MathFinder searches for a method such
that there is a mapping between method inputs and variables of the
subexpression. The subexpression, when evaluated on the test inputs
of the method under this mapping, should produce results that match
the method output on a large number of tests. We implemented Math-

Finder as an Eclipse plugin for discovery of third-party Java APIs and
performed a user study to evaluate its effectiveness. In the study, the
use of MathFinder resulted in a 2x improvement in programmer pro-
ductivity. In 96% of the subexpressions queried for in the study, Math-

Finder retrieved the desired API methods as the top-most result. The
top-most pseudo-code snippet to implement the entire expression was
correct in 93% of the cases. Since the number of methods and unit tests
to mine could be large in practice, we also implement MathFinder in a
MapReduce framework and evaluate its scalability and response time.

1 Introduction

In today’s API-rich world, programmer productivity depends heavily on the
programmer’s ability to discover the required APIs and to learn to use them
quickly and correctly. Significant research efforts are therefore targeted at aid-
ing programmers in API discovery. A programmer can search for APIs using a
wide spectrum of techniques. They range from keywords [15, 3], types [16, 24],
tests [11, 13], and code snippets [17], to formal specifications [29] or combinations
of the above [21]. These approaches try to address the problem of API discovery
in a general programming context and may face challenges in terms of precision
of results or require programmers to invest too much effort in formulating the
query (e.g., require a first-order logic specification).

In this paper, we address the problem of API discovery for mathematical com-
putations. Mathematical computations are at the heart of numerous application
domains such as statistics, machine learning, image processing, engineering or
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scientific computations, and financial applications. Compared to general pro-
gramming tasks, mathematical computations can be specified more easily and
rigorously, using mathematical notation with well-defined semantics. Many inter-
preted languages like Matlab, Octave, R, and Scilab, are available for prototyping
mathematical computations. It is a common practice to include prototype code
to formalize math algorithms (e.g., in [25, 4]). The language interpreter gives
a precise executable semantics to mathematical computations. Unfortunately,
interpreted languages are not always suitable for integration into larger soft-
ware systems of which the mathematical computations are a component. This
is because of commercial and technical issues involving performance overheads,
portability, and maintainability. In such cases, the programmer implements the
mathematical computations in a general-purpose language.

General-purpose programming languages usually support only basic math op-
erations. For example, Java.lang.Math supports elementary functions for expo-
nentiation, logarithm, square root, and trigonometry. Advanced math domains
are supported by third-party libraries. Availability of a number of competing
libraries, their API sizes, and varying support for primitive operations make it
difficult for programmers to select appropriate libraries. We present an approach
for discovering math APIs to compute a given (set of) math expression(s). A
programmer can pose expressions from the algorithm she wants to implement
as queries. For example, suppose she asks for API methods to compute v = v ./
normf(v) (where v is a matrix of doubles). Here, normf stands for the Frobenius
norm, and ./ is matrix-scalar division.

Our technique, called MathFinder, returns pseudo-code to compute the ex-
pression by mapping subexpressions to method calls of individual libraries. For
example,MathFinder identifies a method double DoubleMatrix.norm2() from
a third party library as suitable for computing the subexpression normf(v). It
identifies that v should be mapped to this and the result is available in the return
value of the method call. MathFinder uses this mapping between variables in
the subexpression and method parameters to emit an appropriate method call. In
the synthesized pseudo-code, it declares an object v of type DoubleMatrix. This
object corresponds to the variable v used in the expression. MathFinder emits
double T1 = v.norm2() in the pseudo-code to implement normf(v). Here T1 is
a temporary variable. MathFinder also discovers if a method is likely to mod-
ify the input parameters (i.e. it discovers likely side-effects of methods). In this
example, norm2() does not modify the receiver.

Discovering APIs and the information about setting up of parameters and
determining side-effects automatically is a challenging problem. Formal specifi-
cations of semantics of methods may help us solve this problem. Specification
languages like JML [12] are designed for annotating Java code with specifica-
tions. However, their use is not widespread yet. On the other hand, it is easy
to get an under-approximate operational specification of a method in the form
of unit tests. Unit testing is well-adopted in practice, supported by tools like
JUnit1. We therefore use (the set of input/output objects in) unit tests as a de-
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scription of method semantics. While we chose Java as the target programming
language, our technique can work with other languages.

The key insight in MathFinder is to use an interpreter for a math language
(such as Scilab2) to evaluate subexpressions on unit tests of library methods.
The result of the interpretation on inputs of a test can be compared to the out-
put of the test. Our hypothesis is that if a subexpression results in the same
value as the output of a method on a large number of tests, the method can
be used for computing the subexpression. The subexpression cannot directly be
evaluated on data from unit tests because the math types used in the expression
are independent from the datatypes used in library APIs. We therefore require
the library developer to provide code to convert library datatypes to types of the
math interpreter. Thus, any library developer can hook her library into Math-

Finder. In our running example, the library developer provides code to map
objects of the type DoubleMatrix to double matrices used by the math inter-
preter. Writing code to convert library objects to data values of the interpreter
is a one time task and was fairly straight-forward in our case.

Given an expression, MathFinder extracts subexpressions from it. Given a
subexpression and a method, MathFinder computes the set of all candidate
mappings between variables of the subexpression and method parameters, called
actuals-to-formals mappings. The mappings should respect the correspondence
between library datatypes and math types provided by the library developer.
MathFinder then searches for a mapping that maximizes the number of unit
tests on which the subexpression gives results equivalent to the method outputs.
For example, there is only one possible actuals-to-formals map, (v, this), be-
tween the subexpression normf(v) and the method norm2(). We use the library
developer’s code to assign values contained in this to v. Then, normf(v) evalu-
ates to a value equal to the return value of norm2() on every test of norm2() in
a test-suite with 10 tests. Alongside, MathFinder also infers likely side-effects

of a method call by comparing the input-output values of method parameters.

Our approach falls in the category of specification-driven API discovery [29,
21]. Unlike logical specifications used as queries in these approaches, the queries
to MathFinder are executable and succinct. On the library developer’s front,
the specifications are easy to obtain – just the unit tests and a programmatic
mapping from library datatypes to the math types. In contrast, in test-driven
API discovery approaches [20, 8, 11, 21, 13], the programmer query is itself in
the form of unit tests specific to a library. The unit tests are evaluated on library
methods. Thus, the programmer has to know about library datatypes and invest
time in writing unit tests. In our approach, the programmer query is independent
of library datatypes (it uses mathematical types of the interpreted language).
The same query applies to all libraries that are hooked intoMathFinder. Other
approaches cited above target API discovery for general programming tasks,
whereas, we present a more specific approach for mathematical computations.

We have implemented MathFinder as an Eclipse plugin for discovering
third-party Java APIs. We performed a user study to evaluate whether Math-
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Finder improves programmer productivity, when compared to standard prac-
tices such as the use of Javadoc, Eclipse code completion, and keyword-driven
web or code search. All participants were permitted to use any of these tech-
niques. On the same programming tasks, the participants who used Math-

Finder were twice as fast on average as those who did not use MathFinder.
MathFinders’s results were quite precise across multiple libraries. The API

method retrieved as the top-most result against a subexpression query was cor-
rect 96% of the time. The top-most pseudo-code snippet to implement the en-
tire expression was correct in 93% of the cases. During the course of evaluating
MathFinder, we found discrepancies between MathFinder’s output and the
Javadoc of JBlas library. While MathFinder indicated no side-effect on some
methods, their Javadoc explicitly states that they perform computations “in-
place”3. We studied the method implementations and found that the documen-
tation was indeed inaccurate and the methods had no side-effects.

Our technique is inherently data-parallel. Since the test suite collection can
be quite large in practice, we also implemented it in the Hadoop4 MapReduce
framework. It scaled to a large collection of unit tests consisting of over 200K
tests and returned results in average 80.5s on an 8-core machine. These results
are cached for real-time retrieval using the plugin.

We present an overview of MathFinder in the next section. We discuss
the technique in Sections 3–4 and evaluate it in Section 5. We survey related
approaches in Section 6. We sketch future directions and conclude in Section 7.

2 Overview

1 % input: matrix W of doubles, and
2 % double scalars d, v error
3 pagerank(W, d, v error)
4 N = size(W, 2);
5 v = rand(N, 1);
6 v = v./normf(v);
7 last v = ones(N, 1)∗INF;
8 M hat = d∗W + (1−d)/N∗ones(N, N);
9 cur = normf(v−last v);

10 while( cur > v error)
11 last v = v;
12 v = M hat∗v;
13 v = v./normf(v);
14 cur = normf(v−last v);
15 end

Fig. 1: Scilab code for PageRank
(adapted from Wikipedia)

In this section, we illustrate the Math-

Finder technique with an example.
Consider the Scilab code in Fig. 1 for
the PageRank algorithm [18], a ranking
algorithm used by Google.

Even this reasonably small algo-
rithm requires 9 matrix operators that
are not supported by the standard Java
library. The exact meaning of these op-
erators is not critical for the present
discussion. Selecting a third-party li-
brary that supports all of them is a
tedious and time-consuming task. The
four open-source Java libraries that we
surveyed, namely, Colt, EJML, Jama,
and JBlas5 contain over 400 methods in

3 jblas.org/javadoc/index.html, e.g., the add method
4 hadoop.apache.org
5 respectively, acs.lbl.gov/software/colt/, code.google.com/p/efficient-java-matrix-library/,
math.nist.gov/javanumerics/jama/, jblas.org

http://jblas.org/javadoc/index.html
http://hadoop.apache.org/
http://acs.lbl.gov/software/colt/
http://code.google.com/p/efficient-java-matrix-library/
http://math.nist.gov/javanumerics/jama/
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the classes implementing double matrices. Of these, only JBlas (containing over
250 methods for matrix operations) supports all the required operators. The pro-
grammer must identify that JBlas is the right library. Further, the programmer
must select appropriate methods and learn how to set up method parameters,
and about side-effects of method calls, if any.

The programmer can use MathFinder to query for APIs to implement each
expression in the algorithm. MathFinder gives an aggregate score to the li-
braries indicating how many of the required subexpressions can be implemented
using methods from each library. The programmer can then easily identify JBlas
as the only functionally complete library to implement PageRank.

Suppose the programmer wants to find out how to implement the assignment
in line 6, v = v ./ normf(v) (discussed earlier in Section 1). In this paper, we use
the math types double standing for double scalars, and double M , for double
matrices. The variable v is given the type double M in the query

double M v; v = v ./ normf(v);

The expression form “LHS = RHS” indicates that the programmer wants meth-
ods to implement the RHS, and the types of the result and the LHS should
be the same. Though many interpreted math languages perform dynamic type
inferencing, we need type declarations to make the query unambiguous because
operators used in these languages can be polymorphic. For example, ./ denotes

Table 1: Library classes for the
math type double M

Library Class

Colt DenseDoubleMatrix2D

EJML DenseMatrix64F

Jama DoubleMatrix

JBlas Matrix

both matrix-scalar division and element-wise
division of matrices. For each library, its devel-
oper provides a mapping between math types
and classes used in her library (like in Ta-
ble 1), and code for converting values from the
library’s objects to values of the math type.
This helps us translate type signatures and
data between library types and math types.
Thus, the queries themselves are independent
of the target libraries.

MathFinder then parses the math expression and decomposes it into subex-
pressions (similar to three-address code generation in compilers [1]). The subex-
pressions have a single operator on the RHS by default. v = v ./ normf(v) is
decomposed as

double T1; double M v; T1 = normf(v); v = v ./ T1;

Operator precedence enforces the sequential ordering of computation and tem-
porary variables like T1 are used to explicate data flow. Since the types of the
operators are fixed by the chosen interpreted language, the types of the tempo-
raries can be inferred. Here, MathFinder infers that T1 is a double. Our tech-
nique also permits the programmer to guide the search at a granularity other
than individual operators in order to find a single API method to implement a
larger subexpression, or even the entire expression.



Table 2: Results obtained against the subexpression T1 = normf(v)

Method Actuals-to-formals Map Score

double Algebra.normF(DoubleMatrix2D) (v, arg1), (T1, return) 1.0
static double NormOps.normF(D1Matrix64F) (v, arg1), (T1, return) 1.0
static double NormOps.fastNormF(D1Matrix64F) (v, arg1), (T1, return) 1.0
double Matrix.normF() (v, this), (T1, return) 1.0
double DoubleMatrix.norm2() (v, this), (T1, return) 1.0
static double NormOps.fastElementP(D1Matrix64F,double) (v, arg1), (T1, return) 0.3

MathFinder now picks each subexpression and mines unit tests of library
methods to find the methods to implement it, along with the map from subex-
pression variables to the formal parameters of the method. The method param-
eters must range over library datatypes (or their supertypes) corresponding to
the math types of the subexpression variables. The results obtained against the
subexpression T1 = normf(v) are shown in Table 2. In the actuals-to-formals
maps in Table 2, arg1 stands for the first argument. MathFinder can also
search for methods inherited from a superclass of a class identified by the li-
brary developer as implementing a math type. In this example, methods over
DoubleMatrix2D and D1Matrix64F of the Colt and EJML libraries are also
discovered. These are, respectively, supertypes of DenseDoubleMatrix2D and
DenseMatrix64F identified in Table 1.

Recall our hypothesis that the relevance of a method to implement a subex-
pression is proportional to how often its unit tests match the subexpression on
interpretation. We assign scores to methods based on this observation and rank
them in decreasing order of their scores. As an example of a low-ranked method,
we show the NormOps.fastElementP method of EJML in Table 2. It computes
the p-norm and coincides with normf only on those tests that initialize its second
parameter to 2. Its score (0.3) is much lower than the score of the methods that
compute normf exclusively.

MathFinder then uses the results mined against each subexpression to issue
a pseudo-code snippet. The snippet takes a set of input objects, returns an output
object, and performs the computation queried for. The input objects correspond
to variables from the RHS of the query and the output object, to the LHS
variable. By convention, objects are given the same name as the variables they
correspond to. A sequence of API method calls, with a call corresponding to
every operator used in the query, is used to generate the output object. In this
sequence, if the return value of a method is passed as an argument to another,
then their library types should be compatible, and the output object is the return
value of the last method. MathFinder suggests this snippet from JBlas

DoubleMatrix v; double T1; T1 = v.norm2(); v = v.div(T1);

where div is discovered to implement v = v ./ T1.
MathFinder can thus automate the process of API discovery and compre-

hension to a large extent. The programmer will still have to verify the validity



of the results and translate the pseudo-code to Java code by introducing object
instantiations as necessary. The programmer can use snippets from different li-
braries for different (sub)expressions in her algorithm, provided she writes code
to convert between datatypes of the different libraries.

3 Problem Statement

In this section, we define the problem of math API discovery formally. Con-
sider a query Q which is decomposed into sub-queries. A sub-query has type-
declarations of variables, followed by a subexpression x = e, such that there is
exactly one operator in e. We denote a sub-query by q. Given q, our objective is
to find methods that can be used to implement e. Let m be a method such that
there is a non-empty set Λ(q,m) of actuals-to-formals maps, based on the type
mapping given by the library developer.

Let λ ∈ Λ(q,m) be an actuals-to-formals map . It maps variables in e to input
parameters of m and maps the variable x to an output variable of m (either the
return value or a parameter modified by side-effect). Let a unit test σ of m
map m’s input/output variables to Java objects. Let f be a function from Java
objects to data values of the interpreter. The library developer programatically
encodes f . Given a unit test σ of a method m and an actuals-to-formals map
λ, for a subexpression x = e, σ′ gives the values of variables occurring in x = e.
For a variable y,

σ′(y) = f(σ(y′)), where y′ = λ(y).

The mapping σ′ can be extended to expressions in a natural way. For ex-
ample, σ′(normf(v)) = normf(σ′(v)), where the interpreter computes normf. The
subexpression x = e evaluates to true on a unit test σ, under an actuals-to-
formals map λ, if σ′(x) = σ′(e). A sub-query evaluates to true on a unit test
if its subexpression does. Let N be the total number of unit tests of m, and k
the number of tests on which q evaluates to true, under a particular actuals-to-
formals map λ. The problem is then to find an actuals-to-formals map λ∗ that
maximizes k/N . We call λ∗ the maximizing actuals-to-formals map(MAFM) and
the corresponding value of k/N , the maximal test frequency (MTF).

Ranking API Methods against Sub-query q The MTF quantifies the rele-

vance of the method. Since the same number of unit tests may not be available
for every method, the confidence in a retrieved method does not depend on its
MTF alone. For example, if two methods match a query on all their tests, but
one has only 1 test while the other has 10, intuitively, the confidence in the
latter is higher. We therefore normalize the number of tests per method using a
constant c, by scaling the MTF by the minimum of N/c and 1. We consider a
method with side-effects more difficult to use than one without, and impose a
side-effect penalty, sep, on it. We set sep to a small positive constant for methods
with side-effects and to 0 otherwise. We assign scores to methods according to:

Score(q,m) , min(N
c
, 1). k

N
. 1

1+sep



We then rank (sort) the methods in the decreasing order of their scores (e.g. see
Table 2).

Generating Pseudo-code for Expressions In general, a math expression
may have many operators, with multiple candidate methods available to imple-
ment each. Consider a query Q and a set of candidate methods {m1, . . . ,mn}
to implement it. These are obtained by decomposing the query into sub-queries
{q1, . . . , qn}, and matching them as outlined earlier. The decomposition is type-
correct (by construction) in the math language; however, a pseudo-code snippet
to implement it must respect the type-constraints imposed by the map between
library types and math types as well.

The problem is then to filter the set of all possible candidate-method sets
to only those that are type-consistent, and then generate pseudo-code snippets.
This can be done with an exhaustive search over the ranked lists of methods
retrieved against the sub-queries. The snippets are ranked by taking the average
of the scores of the methods:

Score(Q, {m1, . . . ,mn}) ,
1

n
.
∑n

i=1
Score(qi,mi)

4 Unit Test Mining

In this section, we present an algorithm to compute scores of API methods
against a (sub)expression containing a single operator on the RHS.

Sequential Algorithm We first present a sequential algorithm for mining unit
tests (See Fig. 2).

Input: Query q ≡ x = e, unit tests of method m
Output: The MAFM and MTF for m
1: Σ ← set of unit tests of m
2: for each σ ∈ Σ do

3: Look for side-effects in σ
4: for each λ ∈ Λ(q,m) do
5: Let σ′ be obtained from σ, f and λ
6: if σ′(x) = σ′(e) then
7: Count(λ)← Count(λ) + 1
8: end if

9: end for

10: end for

11: Let λ∗ be such that Count(λ∗) is maximum
12: MTF ← Count(λ∗)/|Σ|

Fig. 2: Sequential Mining Algorithm

As input, the algorithm
takes the query q, with
query expression x = e, and
a method m (together with
its unit tests). Its goal is
to compute the number of
unit tests that match q un-
der every actuals-to-formals
map of m. For each unit
test of m (line 2), the algo-
rithm iterates over the space
of actuals-to-formals maps
Λ(q,m), and constructs a
map σ′ from query variables
to values (in terms of the in-
terpreter data-types, line 5).

If under a particular actuals-to-formals map, the query evaluates to true (line 6)
we increment a counter (the counter is initially set to 0). Finally, the algorithm
returns the maximal actuals-to-formals map λ∗ and the maximum test frequency.
This algorithm also detects side-effects; it identifies side-effects on each method
parameter (line 3) by equating the input/output values of the parameter. If there



exists a test where they do not match, it sets sep to a small positive constant
(not shown in Fig. 2).

MapReduce Version We can easily parallelize our mining algorithm. In par-
ticular, the innermost loop (over λ, line 4) can be executed over different unit
tests in parallel. We exploit this data-parallelism to obtain a scalable MapReduce
version of the mining algorithm.

In the MapReduce programmingmodel [5], the input data to amapper is a set
of key-value pairs. The mapper’s computation is applied to each key-value pair
independently. It can thus be distributed over multiple nodes. After processing
a key-value pair, the mapper can emit an arbitrary number of intermediate key-
value pairs. These pairs represent partial results. The framework then performs a
distributed group-by operation on the intermediate key, and accumulates all the
values associated with it in a list. The reducer gets as its input the intermediate
keys and the corresponding lists. It typically goes over the list of values associated
with a key to compute a final result (aggregate). In a MapReduce framework,
the user only has to provide implementations of the mapper and the reducer;
the framework handles distribution, fault-tolerance, scheduling etc.

Our MapReduce algorithm is supported by a distributed index of unit tests.
We omit details of the index organization in the interest of space. Unit tests are
read from the index as the mapper’s input. The mapper evaluates the subex-
pression on a test under every actuals-to-formals map, emitting an intermediate
key-value pair 〈λ, true〉 or 〈λ, false〉 for each. This partial result says whether
the subexpression evaluated to true or false under a particular λ. After the run-
time performs a distributed group-by operation, a key-value pair arriving at a
reducer contains an actuals-to-formals map λ (key) and a list of booleans (value).
Every entry in this list was generated by evaluating λ on some unit test. Val-
ues of k and N are calculated for a particular λ by iterating over this list. λ∗

(the maximizing actuals-to-formals map) is the key that maximizes k/N over all
key-value pairs. In our implementation, we lift this algorithm to work on indices
containing unit tests of multiple methods from across libraries.

5 Implementation and Evaluation

Implementation We implemented the MapReduce version of the mining al-
gorithm in the Apache Hadoop framework, with Scilab as the interpreter. We
ran the mining algorithm on a unit test index containing unit tests from our
target libraries, that we wrote using JUnit. We used Serialysis6 to serialize
input/output values from the unit tests, and provided hooks in our framework
for specifying the mapping between library and math types. As an optimization,
we cached the top k methods retrieved against every operator in the interpreted
language in an operator index, which is a Java HashMap, serialized to disk.

We implemented MathFinder as an Eclipse plugin that interfaces Eclipse
with the API discovery and snippet-generation engines. In Eclipse, the Math-

6 weblogs.java.net/blog/emcmanus/serialysis.zip
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Finder view offers a search bar to type math expressions in. We parse, type-
check and decompose expressions into subexpressions using the Antlr37 frame-
work. Subexpressions are answered in real-time by looking up the operator index.

User Study We conducted a user study to measure whether MathFinder im-
proves programmer productivity on mathematical programming tasks when com-
pared to reading Javadoc, using Eclipse code-completion, and keyword-driven
web or code search. To measure this, we picked a set of four mathematical pro-
gramming tasks (see Table 3 for a summary) that required third-party libraries
to complete. Only the first task could be implemented using any target library,
while the others required a careful evaluation of the APIs to find a function-
ally complete target library. We presented the algorithms to the participants as
method stubs in Eclipse.

Table 3: Summary of the tasks used in the user study

Task Algorithm Name Description

1 Conjugate Gradient Linear Equation Solving
2 Chebyshev Polynomial Interpolation
3 PageRank Webpage Ranking
4 Rayleigh Iteration Eigenvalue Computation

We deemed partici-
pants to have completed
a task when their pro-
gram passed all our unit
tests. The main barrier to
implementation was the
lack of direct Java sup-
port, rather than algorithmic subtleties. We chose small tasks, expecting the
participants to finish them within two hours. There were 16 unique operators
across the tasks, and 5 to 8 queries in each task whose implementation required
method composition. The target libraries were Colt, EJML, Jama and JBlas.

Our participants were 5 industry professionals and 3 graduate students not
affiliated to our research group. Two participants attempted every task, one
without MathFinder and one with MathFinder. Those in the control group

were allowed to use Javadoc, Eclipse code completion, and web or code search
engines; in addition, those in the experimental group were allowed to use Math-

Finder. We gave the participants handouts describing the operators used in the
tasks, and a mapping between library types and math types (similar to Table 1).

Timing Results Table 4 shows the timing results of the user study. All times are in

Table 4: Task completion times

Task
Control Experimental
group group(speed-up)

1 95m 51m(1.86x)
2 93m 64m(1.45x)
3 97m 39m(2.49x)
4 75m 30m(2.50x)

minutes. MathFinder users finished 1.96
times as fast as the control-group partici-
pants on average. Though the study is not
large enough to measure the difference with
statistical significance, these results suggest
that MathFinder helps improve produc-
tivity.

Control group participants reported that
they found selecting an API that best sup-
ported their task difficult, often requiring a search over Javadoc pages of multiple
libraries. We expected participants to pick keywords out of operator descriptions
in the handout (e.g., “matrix multiplication”) and use Google or code search en-
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gines, but surprisingly, only one participant did so. This may be due to the
difficulty of analyzing a number of independent search results, pertaining to in-
dividual operators in the task. Almost all control group users relied on Eclipse
code completion. This proved unhelpful at times, given the sheer number of
methods in some relevant API classes, similar names, and because the required
functionality was spread across multiple classes. For example, there are at least
16 methods in the CommonOps class of EJML with a prefix “mult”, and all have
something to do with matrix multiplication. JBlas has 19 such methods in the
DoubleMatrix class. Although we did not provide type-based API discovery
tools [16, 24] to aid participants, we believe that these would not have altered
the outcome significantly. Type-based queries can result in many spurious results
for math APIs because a large number of methods operate over the same types.
For example, the JBlas library has over 60 methods that take two DoubleMatrix
objects as input and return a DoubleMatrix object. Searching by method sig-
natures cannot distinguish, say, matrix addition from matrix multiplication.

MathFinder users, on the other hand, were able to formulate queries di-
rectly from the tasks, and all of them reported that the tool was easy to use.
With the tool, they were able to quickly gauge the extent of library support for
their task across libraries, and zero-in on the right library. The queries returned
precise results, and usually, the participants did not have to look beyond the top
ranked snippet. They copied the suggested snippets into the workspace and com-
pleted them, consulting the Javadocs only to find appropriate constructors. This
experience leads us to believe that MathFinder will deliver larger productivity
gains with more complex tasks and diverse API requirements.

Precision and Recall We evaluate the precision of our approach on both API dis-
covery and synthesis of pseudo-code snippets. To evaluate precision of API dis-
covery, we picked the set of unique operators from across the tasks; there were 16.

Table 5: Precision of API Dis-
covery

Library
#correct@rank-1

#supported-operators

Colt 6/ 7( 86%)
EJML 13/13(100%)
Jama 13/13(100%)
JBlas 13/14( 93%)

Total 45/47( 96%)

Of these, Colt supports 7, EJML 13, Jama
13 and JBlas 14. For unsupported operators,
MathFinder returns empty results, since it
picks only results with a score above a thresh-
old (0.75). The precision on operators sup-
ported by individual libraries is given in Ta-
ble 5. The precision is high (96% on aver-
age), despite the fact that these libraries use
different class definitions, calling conventions,
etc. Also, MathFinder retrieved all relevant
methods from all libraries (recall 1), with two
exceptions. One was the eyes operator, used to
generate identity matrices. The corresponding JBlas method eyes was not re-
trieved. This method takes only one argument (equal to both the number of rows
and columns), whereas the eyes operator in Scilab takes two integer arguments
(rows and columns) separately. A relaxed type matching may help us identify
methods like eyes that take fewer parameters than the subexpression variables.
The other exception was the transpose operator. MathFinder mapped it to an



incorrect method of Colt. Later, we were able to attribute it to having missed a
special case in mapping library datatypes to interpreter datatypes. This imple-
mentation issue was easy to fix, but we only report results prior to the fix.

Table 6: Precision of synthe-
sized pseudo-code snippets

Library
#correct-snippet
#expressions

Colt 2/ 6( 33%)
EJML 17/17(100%)
Jama 15/15(100%)
JBlas 16/16(100%)

Total 50/54( 93%)

There were 24 expressions in total in all the
tasks. The operators used in these expressions
were not supported by every library. Therefore,
to measure the precision of pseudo-code snippet
synthesis on a library, we only considered expres-
sions that could be implemented fully using it.
With this restriction, Colt supports 6 expressions,
EJML 17, Jama 15, and JBlas 17. For the expres-
sions that could be implemented, we evaluated, for
each library, whether the top-most code snippet
MathFinder returned was correct. The results
are given in Table 6. The precision across libraries
is 93% on average. Our technique is able to mine operator to method maps as
well as maps from actuals to formals accurately, which in turn means that the
synthesized pseudo-code snippets are precise. Colt’s precision was low because
4/6 expressions used transpose (which was mapped to an incorrect method).

Threats to Validity Threats to internal validity include selection bias where the
control and experimental groups may not be equivalent at the beginning of the
study, and testing bias where pre-test activities may affect post-test outcomes.
To prevent selection bias, we conducted a survey before the study and paired
programmers with similar levels of Java expertise. We then assigned them the
same task, but chose their group (control or experimental) randomly. To mitigate
testing bias, we gave the experimental group participants a 20 minute presenta-
tion on the tool instead of a hands-on tutorial. Threats to external validity arise
because our results may not generalize to other groups of programmers and
programming tasks. To ensure a level playing field, we made sure none of our
participants had prior exposure to the target APIs. But this meant that we had
to leave out expert users of the target APIs. Therefore, the study does not assess
the benefits of MathFinder to domain experts and whether selecting another
candidate library is as difficult for them as for programmers with no experience
with any of the libraries. As target APIs, we picked popular open-source third-
party libraries which we believe are representative. However, further studies are
needed to validate the findings for other APIs in the math domain.

Scalability and Response Time Our retrieval target collection had 406 meth-
ods: 41 methods from Colt, 70 from EJML, 45 from Jama, and 250 from JBlas.
We obtain the time for API discovery using 10, 200 and 500 tests/method against
queries involving operators used in the tasks. With 10 tests/method, the experi-
ments were performed on a desktop running Ubuntu 10.04 with an Intel i5 CPU
(3.20GHz, 4GB RAM). We used a single mapper and reducer to run the MapRe-
duce implementation of the mining algorithm. With 200 and 500 tests/method,
the experiments were carried out on a machine running CentOS 5.3, with 8 Xeon
quad-core processors (2.66GHz, 16GB RAM). The machine could run up to 7



mappers and 2 reducers. For computing scores, we set the side-effect-penalty to
0.2. The processing time per query was 3.7s on average with 10 tests/method
(desktop), 56.7s with 200 tests/method and 80.5s with 500 tests/method (multi-
core processor). The precision of results did not vary significantly with 200 or
500 tests/method, suggesting that for the domain we considered, our technique
is able to achieve high precision with only a few tests/method. The study shows
that our implementation scales to an index with over 200K test records.

Limitations Our ranking function does not take into account performance or
efficiency of API implementations. It does not rank an API method that is
a specialization of the math operator lower. We cannot discover compositions
of API methods to implement a single operator. Our approach, in its current
form, cannot discover APIs that take function objects as parameters, e.g., one
of our target libraries, Colt, has a set of functions available through a function
assign which takes function objects as input. The equality between query and
method outcomes is relaxed, in that, double precision numbers computed by
the interpreter and by an API method are said to be equal if they are within
ǫ = .001 of each other. The incompleteness or errors in data (unit tests) can
affect precision of results. This is true of any data mining approach.

6 Related Work

In text search, the popularity of web search engines shows that keyword-driven
queries are used extensively. In programming, the main utility of web search
engines seems to be to retrieve library documentation. Commercial code search
engines (e.g. Codase, Google code search, Koders, Krugle, etc.)8 retrieve declara-
tions and reference examples given library and method names. These approaches
are difficult to use if the programmer does not know the suitable libraries or
methods to begin with. Some research tools like Assieme [9], Codifier [2], and
Sourcerer [14] can perform syntactic search using richer program structure. The
MathFinder approach is purely semantic and does not use keywords or pro-
gram structure for search.

Several approaches [22, 28, 16, 24] use types for API discovery. These ap-
proaches discover API call sequences to go from an input type to an output
type by mining API declarations and in some cases, client source code. A dy-
namic analysis approach, MatchMaker [27], discovers API sequences by mining
program traces. In our experience, the objects set up using math APIs are easy
to initialize and do not require a sequence of calls to set up state before they
may be used. Since types alone may not be enough for accurate API discovery,
some techniques combine them with structural contexts including comments,
field/method names, inheritance relations, and method-parameter, return-type,
and subtype relations [26, 10, 23, 6]. Types are also combined with keywords in
Keyword Programming [15] and SNIFF [3]. Apart from APIs, type-based code
completion approaches such as InSynth [7] and the work of Perelman et al. [19]
also search over variables in the typing context.

8 respectively, codease.com, code.google.com/hosting, koders.com, krugle.org

http://www.codase.com
http://code.google.com/hosting
www.koders.com
www.krugle.org


The main limitations of type-driven approaches include (i) the assumption
that the programmer has (partial) knowledge of the types and (ii) the lack of pre-
cise semantic information in the queries. In MathFinder, the programmer for-
mulates queries over mathematical types (of the interpreted language used) and
not over library types. Thus, the same query is enough to discover APIs across
multiple libraries. Our queries are math expressions over interpreted operators
and can accurately identify methods for the operators in the query expression.

Prime [17] queries are partial programs, from which it mines partial tempo-
ral specifications and matches them against an index of temporal specifications
built from example code from the web. We have already compared our work, in
Section 1, with more closely related approaches like specification-driven [29, 21]
and test-driven [20, 8, 11, 21, 13] techniques for API discovery.

7 Conclusions and Future Work

This paper presents a novel technique to search for math APIs. A programmer
submits a math expression directly as a query to MathFinder which returns
pseudo-code for computing it by composing library methods. The approach com-
bines executable semantics of math expressions with unit tests of methods to
mine a mapping from expression variables to method parameters and detects
likely side-effects of methods. We show that the approach improves programmer
productivity, gives precise results, and scales to large datasets.

The availability of rigorous specifications make mathematical computations
an attractive choice for automated code synthesis. The existence of mature li-
braries makes the synthesis problem in this domain more about API discovery
than algorithm discovery. Our work is a step toward API-driven synthesis.

Some methods may take more parameters than the corresponding math op-
erator. Mining initializations to these parameters from unit tests is an interesting
future direction. We also plan to explore more general queries involving predi-
cates. API migration is a potential application of our unit test mining approach.
The semantics of APIs to be migrated can be specified in math notation, to
obtain matching APIs from other libraries using MathFinder.
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