ABSTRACT

Students have enthusiastically taken to online programming lessons and contests. Unfortunately, they tend to struggle due to lack of personalized feedback. There is an urgent need of program analysis and repair techniques capable of handling both the scale and variations in student submissions, while ensuring quality of feedback.

Towards this goal, we present a novel methodology called semi-supervised verified feedback generation. We cluster submissions by solution strategy and ask the instructor to identify or add a correct submission in each cluster. We then verify every submission in a cluster against the instructor-validated submission in the same cluster. If faults are detected in the submission then feedback suggesting fixes to them is generated. Clustering reduces the burden on the instructor and also the variations that have to be handled during feedback generation. The verified feedback generation ensures that only correct feedback is generated.

We implemented a tool, named CoderAssist, based on this approach and evaluated it on dynamic programming assignments. We have designed a novel counter-example guided feedback generation algorithm capable of suggesting fixes to all faults in a submission. In an evaluation on 2226 submissions to 4 problems, CoderAssist could generate verified feedback for 1911 (85%) submissions in 1.6s each on an average. It does a good job of reducing the burden on the instructor. Only one submission had to be manually validated or added for every 16 submissions.

CCS Concepts

- Social and professional topics → Student assessment;
- Applied computing → Computer-assisted instruction;
- Theory of computation → Program analysis;

Keywords

MOOCs, Feedback generation, Clustering, Verification

1. INTRODUCTION

Programming has become a much sought-after skill for superior employment in today’s technology-driven world [1]. Students have enthusiastically taken to online programming lessons and contests, in the hope of learning and improving programming skills. Unfortunately, they tend to struggle due to lack of personalized feedback when they make mistakes. The overwhelming number of student submissions precludes manual evaluation. There is an urgent need of automated program analysis and repair techniques capable of handling both the scale and variations in student submissions, while ensuring quality of feedback.

A promising direction is to cluster submissions, so that the instructor provides feedback for a representative from each cluster which is then propagated automatically to other submissions in the same cluster [20, 41]. This provides scalability while keeping the instructor efforts manageable. Many novel solutions have been proposed in recent times to enable clustering of programs. These include syntactic or test-based similarity [15, 44, 20, 13, 12], co-occurrence of code phrases [36] and vector representations obtained by deep learning [40, 41, 33]. However, clustering can be correct only in a probabilistic sense. Thus, these techniques cannot guarantee that the feedback provided manually by the instructor, by looking only at some submissions in a cluster, would indeed be suitable to all the submissions in that cluster. As a result, some submissions may receive incorrect feedback. Further, if submissions that have similar mistakes end up in different clusters, some of them may not receive the suitable feedback. Instead of helping, these drawbacks can cause confusion among the students.

To overcome these drawbacks, we propose a novel methodology in which clustering of submissions is followed by an automated feedback generation phase grounded in formal verification. Figure 1 shows our methodology, called semi-supervised verified feedback generation. Given a set of unlabeled student submissions, we first cluster them by similarity of solution strategies and ask the instructor to identify a correct submission in each cluster. If none exists, the
void main() {
 int i, j, n, max;
 scanf("%d", &n); // Input
 int m[n][n], dp[n][n]; // dp is the DP array
 for (i = 0; i < n; i++)
 for (j = 0; j < n; j++)
 scanf("%d", &m[i][j]); // Input
 dp[0][0] = m[0][0]; // Initialization
 for (i = 1; i < n; i++)
 for (j = 0; j < n; j++)
 if (j == 0)
 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
 else if (j == i)
 dp[i][j] = dp[i-1][j-1] + m[i][j]; // Update
 else if (dp[i][j] > dp[i-1][j-1])
 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
 else
 dp[i][j] = dp[i-1][j] + m[i][j]; // Update
 }
 max = dp[n-1][n-1];
 for (i = 0; i < n; i++)
 if (dp[n-1][i] > max)
 max = dp[n-1][i];
 printf("%d", max); // Output
}

Figure 2: A correct submission for the matrix path problem.

In the declaration: 1) Types of A and D should be int[n][n]
In the update:
2) Under guard j == 0, compute D[i][j] = D[i][j-1] + A[i][j]
 instead of D[i][j] = A[i][j] + (D[i][j-1]>D[i][j-1]-1) ?
 D[i-1][j] : D[i][j-1]-1).
3) Under guard j == 0 & i == 1,
 compute D[i][j] = D[i][j-1] + A[i][j]
 instead of D[i][j] = A[i][j] + (D[i][j]>D[i][j]-1) ?
 D[i-1][j] : D[i][j-1]-1).
In the output: 4) Under guard true, compute maximum
 over D[0][0],...,D[n-1][n-1] instead of D[0][0],...,D[n-1][n-1].

Figure 4: The auto-generated feedback for the submission in Figure 3 by verifying it against the submission in Figure 2.

1http://www.codechef.com/problems/SUMTRIAN

Figure 3: A faulty submission belonging to the same cluster as the correct submission in Figure 2.

This methodology has several advantages: 1) It uses unsupervised clustering to reduce the burden on the instructor. The supervision from the instructor comes in the form of identifying a correct submission per cluster. 2) The verification phase complements clustering by providing certainty about correctness of feedback. In return, clustering helps by reducing the variations required to be handled during feedback generation. Since only submissions that are similar (i.e., belong to the same cluster) are compared, there is a higher chance of making equivalence checking work in practice. 3) Feedback is generated for each submission separately so it is personalized. This is superior to propagating a manually-written feedback indiscriminately to all the submissions in a cluster. 4) Through verification, we can identify logical faults and fixes in a comprehensive manner.

To demonstrate the effectiveness of this methodology, we apply it to iterative dynamic programming assignments. Dynamic programming (DP) [8] is a standard technique taught in algorithms courses. Shortest-path and subset-sum are among the many problems that can be solved efficiently by DP. We design features that characterize the DP strategy and extract them from student submissions by static analysis and pattern matching. We use these features for clustering the submissions.

We also propose a novel feedback generation algorithm called counter-example guided feedback generation. The equivalence between two submissions is checked using syntactic simplifications and satisfiability modulo theories (SMT) based constraint solving.

In the output:
1) Types of A and D should be int[n][n]
In the update:
2) Under guard j == 0, compute D[i][j] = D[i][j-1] + A[i][j]
 instead of D[i][j] = A[i][j] + (D[i][j-1]>D[i][j-1]-1) ?
 D[i-1][j] : D[i][j-1]-1).
3) Under guard j == 0 & i == 1,
 compute D[i][j] = D[i][j-1] + A[i][j]
 instead of D[i][j] = A[i][j] + (D[i][j]>D[i][j]-1) ?
 D[i-1][j] : D[i][j-1]-1).
In the output: 4) Under guard true, compute maximum
 over D[0][0],...,D[n-1][n-1] instead of D[0][0],...,D[n-1][n-1].

Figure 4: The auto-generated feedback for the submission in Figure 3 by verifying it against the submission in Figure 2.
array sizes as int[n][n] instead of hardcoded value of int[101][101]. The update to the DP array \(D \) at line 20 in Figure 3 misses some corner cases for which our algorithm generates corrections #2 and #3 above. The computation of output at line 22 should use the correct array bounds as indicated by correction #4. This is a comprehensive list of changes to fix the faulty submission.

We have implemented our technique for C programs in a tool named CoderAssist and evaluated it on 2226 student submissions to 4 problems from CodeChef. On 1911 (85%) of them, CoderAssist could generate feedback by either verifying them to be correct, or identifying faults and fixes for them. In addition to faults in wrong answers, we also found faults in 265 submissions accepted by CodeChef as correct answers! This is because of the incompleteness of test suites used by CodeChef. The submissions come from 1860 students from over 250 different institutes and are therefore representative of diverse backgrounds and coding styles. Even then, the number of clusters ranged only from 2–80 across the problems. CoderAssist does a good job of reducing the burden on the instructor.

On an average, using one manually validated or added submission, we generated verified feedback on 16 other submissions. We had to add only 7 correct solutions manually. While our technique generated feedback automatically for 1911 submissions, the remaining 315 (15%) submissions require manual evaluation. Our technique is fast and on an average, took 1.6s to generate feedback for each submission. The source code of CoderAssist and data are available at https://bitbucket.org/iiscsce/coderassist.

Work on feedback generation has focused on introductory programming assignments [46, 17, 21]. In comparison, we address the challenging class of algorithmic assignments, in particular, that of DP. We focused on DP for two reasons: DP is more sophisticated than greedy and divide-and-conquer strategies, and we could identify an interesting dataset for evaluation. The techniques employed in CoderAssist can be extended for other problems which have array-based iterative solutions. The program repair approaches for developers [27, 37, 24, 31, 29] deal with one program at a time. We work with all student submissions simultaneously. To do so, we propose a methodology inspired by both machine learning and verification. Unlike the developer setting, we have the luxury of calling upon the instructor to identify or add correct solutions. We exploit this to give complete and correct feedback but then our technique must solve the challenging (and in general, undecidable) problem of checking semantic equivalence of programs.

The salient contributions of this work are as follows:

- We present a novel methodology of clustering of submissions followed by program equivalence checking within each cluster. This methodology can pave way for practical feedback generation tools capable of handling both the scale and variations in student submissions, while minimizing the instructor’s efforts and ensuring quality of feedback.
- We demonstrate that this methodology is effective by applying it to the challenging class of iterative DP solutions. We design a clustering technique and a counter-example guided feedback generation algorithm for DP solutions.
- We provide an implementation of our technique and experimentally evaluate it on 2226 submissions to 4 problems, successfully generating verified feedback for 85% of them. We show that our technique does not require many inputs from the instructor and runs efficiently.

2. DETAILED EXAMPLE

We now explain in details how our technique handles the motivating example from the previous section.

2.1 Clustering Phase

The two submissions in Figure 2 and Figure 3 are syntactically and structurally quite different. Our technique extracts features of the solution strategy in a submission. These features are more abstract than low-level syntactic or structural features and put the superficially dissimilar submissions into the same cluster.

The solution strategy of a DP program is characterized by the DP recurrence being solved [8]. The DP recurrence for the correct submission in Figure 2 is as follows:

\[
dp[i][j] = \begin{cases}
0 & \text{if } i = 0, j = 0 \\
\min(dp[i-1][j]+m[i][j], dp[i-1][j-1]+m[i][j], \max(dp[i-1][j], dp[i-1][j-1])-m[i][j]) & \text{otherwise}
\end{cases}
\]

where \(dp \) is the DP array, \(m \) is the input matrix of \(n \) rows, and \(i \) goes from 0 to \(n-1 \), \(j \) goes from 0 to \(i \) and \(\max \) returns the maximum of the two numbers. The DP recurrence of the submission in Figure 3 is similar but misses the second and third cases above.

Comparing the recurrences directly would be ideal but extracting them is not easy. Students can implement a recurrence formula in different imperative styles. They may use multiple procedures (as in Figure 3) and arbitrary temporary variables to hold intermediate results. Rather than attempting to extract the precise recurrence, we extract some features of the solution to find submissions that use similar solution strategies. For this, our analysis identifies and labels the DP arrays used in each submission. It also identifies and labels key statements that (1) read inputs, (2) initialize the DP array, (3) update the DP array elements using previously computed array elements, and (4) generate the output. The comments in Figure 2 and Figure 3 identify the DP arrays and key statements.

We call a loop which is not contained within any other statement as a top-level loop. For example, the loop at lines 9–19 in Figure 2 is a top-level loop but the loop at lines 10–18 is not. More generally, a statement which is not contained within any other statement is a top-level statement. The features extracted by our technique and their values for the submission in Figure 2 are as follows:

1. Type and the number of dimensions of the DP array: \(\langle \text{int, } 2 \rangle \)
2. Whether the input array is reused as the DP array: No
3. The number of top-level loops which contain update statements for the DP array: 1
4. For each top-level loop containing updates to the DP array,
 a. The loop nesting depth: 2
 b. The direction of loop indices: \(\langle +, + \rangle \) (indicating that the respective indices are incremented by one in each iteration of the corresponding loops)
 c. The DP array element updated inside the loop: \(dp[i][j] \)

The submission in Figure 3 yields similar feature values and is clustered along with the submission in Figure 2. Extracting these features requires static analysis and syntactic pattern matching. The DP strategy relies on reusing solutions to sub-problems stored in a DP array. This array therefore appears on both sides in the DP recurrence. We exploit this observation. However, identifying a DP array is challenging in practice because a student may use some temporary variables to store intermediate results of DP computation and pass values across procedures. As explained in Section 3.1, we track data dependences inter-procedurally to overcome these issues. In Figure 3, the array elements \(D[i-1][j] \) and \(D[i-1][j-1] \) are passed to the procedure \(\max \). Through inter-procedural analysis, our technique infers that the return value of \(\max \) is indeed defined in terms of these arguments and hence, \(D \) is defined in terms of itself at line 20. Thereby, it discovers that \(D \) is a DP array.
\[\text{pre} \quad A[i][j] = m[i][j] \land D[i-1][j] = dp[i-1][j][1] \land D[i-1][j-1] = dp[i-1][j][1] \land 1 \leq i < n \land 0 \leq j \leq 1 \]
\[\psi_1 \\
\{ (j = 0) \implies \text{dp}'[i][j] = \text{dp}[i-1][j] + m[i][j] \land ((j \neq 0 \land j = i) \implies \text{dp}'[i][j] = \text{dp}[i-1][j-1] + m[i][j] \land \}
\{ ((j \neq 0 \land j = 1) \land \text{dp}[i-1][j] > \text{dp}[i-1][j-1]) \implies \text{dp}'[i][j] = \text{dp}[i-1][j] + m[i][j] \land \}
\{ (j \neq 0 \land j = 1) \land \text{dp}[i-1][j] \leq \text{dp}[i-1][j-1]) \implies \text{dp}'[i][j] = \text{dp}[i-1][j] + m[i][j] \} \]
\[\psi_2 \quad (\text{true} \implies D'[i][j] = A[i][j] + (D[i-1][j] > D[i-1][j-1] ? D[i-1][j] : D[i-1][j-1])) \]
\[\text{post} \quad \text{dp}'[i][j] = D'[i][j] \]

Figure 5: Equivalence query \(\psi_1 \) for the DP update of the programs in Figure 2 and Figure 3.

2.2 Verification and Feedback Phase

After clustering, suppose the instructor identifies the submission in Figure 2 as correct. We aim to verify the submission in Figure 3 against it and suggest fixes if any faults are found. For brevity, we will refer to the submission in Figure 2 as the reference and the submission in Figure 3 as the candidate.

By analyzing the sequence in which inputs are read, our technique infers that the candidate uses two input variables: an integer variable \(n \) and a 2D integer array \(A \), where \(n \) is read first (line 13) and \(A \) second (line 16). Their types respectively match the types of the input variables \(n \) and \(m \) of the reference except that the candidate uses a hardcoded array size for \(A \). Both submissions use 2D integer DP arrays but the candidate hardcodes array size of the DP array \(D \) also. Our technique therefore emits correction #1 in Figure 4 suggesting sizes for \(A \) and \(D \).

We check equivalence of matching code fragments of the two submissions. The matching code fragments are easy to identify given the statement labels computed during feature extraction. For our example, line 20 of the candidate is an “update” statement and lines 12, 14, 16 and 17 of the reference are also “update” statements. Therefore, the top-level loop (say \(L_2 \)) at lines 18–20 of the candidate matches the top-level loop (say \(L_1 \)) at lines 9–19 of the reference. The question is whether they are equivalent.

We check equivalence of the loop headers first. The input variables \(n \) in both submissions correspond to each other and are not re-assigned before they are used in the respective loop headers. Therefore, the loop headers of \(L_1 \) and \(L_2 \) are equivalent. Thus, the corresponding loop indices are equal in each iteration.

To check equivalence of loop bodies, our algorithm formulates an equivalence query \(\psi_1 \) which asserts that in any \((i,j)\)th iteration, if the two DP arrays are equal at the beginning then they are equal at the end of the iteration. The equivalence query is of the form

\[\psi_1 \equiv \text{pre} \land \phi_1 \land \phi_2 \implies \text{post} \]

where \(\text{pre} \) encodes the equality of elements of DP arrays, loop indices and input variables at the beginning of the iteration; and the lower and upper bounds on the loop index variables in the reference. \(\phi_1 \) encodes the equality of elements of DP arrays, assigned within the loop body, at the end of the iteration (we syntactically check that input variables are not changed). \(\phi_2 \) is a formula encoding the statements in the loop body of the reference. Finally, \(\phi_2 \) is a formula encoding the statements in the loop body of the candidate. Converting a loop-free sequence of statements into a formula is straightforward. For example, an if-statement such as if(p) x = e is converted to a guarded equality constraint \(p : x' = e \) where \(x' \) is a fresh variable. The predicates in an if-else statement are propagated so as to make the guards mutually disjoint and finally, the conjunction of all guarded equality constraints is taken.

For our example, \(\phi_2 \) is shown in Figure 5. For brevity, we do not show equality of loop indices and scalar input variables in \(\text{pre} \) in the figure. We use primed variables to indicate updated variable values due to assignments. Following the usual convention, we use \(= \) as equality in formulae and use \(== \) as equality in code. Similarly, \(\neq \) and \(!= \) denote disequality symbols in formulae versus code.

As shown in Figure 6.a, the algorithm checks whether \(\phi_1 \) is a logically valid formula. The SMT solver finds the following counter-example \(E_1 \) which shows that the formula is not valid:

\[j = 0, \text{dp}'[i][j] = 1, \text{D}'[i][j] = 2, \\ m[i][j] = A[i][j] = 1, \\ \text{dp}[i-1][j] = D[i-1][j] = 0, \text{dp}[i-1][j-1] = D[i-1][j-1] = 1 \]

Our algorithm, called counter-example guided feedback generation algorithm, uses \(E_2 \) to localize the fault in the candidate. It first identifies which guards are satisfied by the counter-example in the candidate and the reference, and whether they are equivalent. The guard \(j = 0 \) is satisfied in \(\phi_1 \) and the implicit guard \text{true} for line 20 is satisfied in \(\phi_2 \). Since they are not equivalent, the algorithm infers that the faulty submission is missing a condition. On the contrary, if the guards turn out to be equivalent, the fault is localized to the assignment statement. It then derives a formula \(\phi_3' \) as shown in Figure 6.b which lets the candidate compute line 20 under the guard \(j=0 \) and makes it compute \(D[i][j] = D[i-1][j]+A[i][j] \) under \(j==0 \). This assignment statement is obtained from the assignment at line 12 under the guard \(j==0 \) of the reference in Figure 2 by substituting the variables from the candidate. The algorithm records this refinement in the form of correction #2 of Figure 4.

As shown in Figure 6.a, it checks validity of \(\phi_2 \equiv \text{pre} \land \phi_1 \land \phi_2 \implies \text{post} \) obtained by replacing \(\phi_2 \) (the encoding of candidate’s loop body) by \(\phi_2' \) (defined in Figure 6.b). This results in a counter-example \(E_2 \) using which the algorithm discovers the missing case of \(j==i \) and generates correction #3 of Figure 4. For brevity, we do not show the counter-example \(E_2 \). A refined equivalence query \(\phi_3 \) shown in Figure 6.b is computed. As shown in Figure 6.a, this formula is valid and establishes that the faults in the candidate can be fixed using the synthesized feedback.

The input and initialization parts of the two submissions are found to be equivalent. In our experiments, we observed certain repeating iterative patterns such as the computation of a maximum over an array in lines 6–8 in Figure 3. We encode syntactic patterns to lift these to certain predefined functions. We define _max which takes the first and the last elements of a contiguous array segment as arguments and returns the maximum over the array segment. In Figure 3, the output expression in terms of _max is _max(D[n-1][0], D[n-1][99]) and in Figure 2, the output is _max(dp[n-1][0], dp[n-1][n-1]). A syntactic comparison between the two leads to correction #4 in Figure 4.

3. TECHNICAL DETAILS

3.1 Clustering by Solution Strategy
The first phase of our technique is to cluster submissions by the solution strategy so that each cluster can be analyzed separately.

3.1.1 Feature Design

Section 2.1 has already introduced the features of a submission that we use. Typically, in machine learning, a large number of features are obtained and then the learning algorithm finds the important ones (called feature selection). In our case, since the domain is well-understood, we design a small number of suitable features that provide enough information about the solution strategy.

In particular, we cluster two submissions together if 1) they use the same type and dimensions for the DP arrays, 2) either both use DP arrays distinct from the input arrays or not, and 3) there is a one-to-one correspondence between top-level loops which contain DP update statements — the loops should have the same depth, direction and the DP array element being updated. Two submissions in the same cluster can differ in all other aspects.

The rationale behind these features is simple: Checking equivalence of two submissions which use the same types of DP arrays and similar DP update loops is easier than if they do not share these properties. For example, the subset-sum problem can be solved by using either a boolean DP array or an integer DP array, but the two implementations are hard to compare algorithmically. A submission may solve the matrix path problem by traversing the matrix from top-to-bottom and another by traversing it from bottom-to-top. Using one to validate the other is difficult and perhaps, even undesirable. Our features prevent them from being part of the same cluster. Imposing further restrictions (by adding more features) can make verification simpler but will increase the burden on the instructor by creating additional clusters.

The feature 4.c in Section 2.1 requires some explanation. We want to get the DP array element being updated inside each loop containing a DP update statement. To compare them across submissions, we use canonical names for them: \(d_p \) for the DP array and loop indices \(i, j \), etc. from the outer to inner loops. If a submission uses multiple DP arrays then we assign subscripts to \(d_p \).

3.1.2 Feature Extraction

Identifying input statements and variables is simple. We look for the common C library functions like \(scanf \). The case of output statements is similar. A variable \(x \) is identified as a loop index variable if 1) \(x \) is a scalar variable, 2) \(x \) is initialized before the loop is entered, 3) \(x \) is updated inside the loop and 4) \(x \) is used in the loop guard. Identifying DP arrays requires more subtle analysis discussed below. We call DP arrays, input variables and loop indices in a submission as DP variables. All other variables are called temporary variables.

To eliminate a temporary variable \(x \) at a control location \(l \), we compute a set of guarded expressions \(\{g_1 : e_1, \ldots, g_n : e_n\} \) where the guards and expressions are defined only over DP variables, and the guards are mutually disjoint. We denote this set by \(\Sigma(l, x) \) and call \(\Sigma \) the substitution store. Semantically, if \(g_k : e_k \in \Sigma(l, x) \) then \(x \) and \(e_k \) evaluate to the same value at \(l \) whenever \(g_k \) evaluates to true at \(l \). The substitution store \(\Sigma \) is lifted in a natural manner to expressions and statements. For instance, for an assignment statement \(s \equiv x = e, \Sigma(l, s) = \{g_1 : x = e_1, \ldots, g_n : x = e_n\} \) where \(\{g_1 : x_1, \ldots, g_n : x_n\} = \Sigma(l, e) \).

Gulwani and Juvekar [16] developed an inter-procedural backward symbolic execution algorithm to compute symbolic bounds on values of expressions. While we are not interested in the bounds, the equality mode of their algorithm suffices to compute substitution stores. We refer the reader to [16] for the details.

To determine whether a statement \(s \) at location \(l \) is an initialization or an update statement, we perform pattern matching over \(\Sigma(l, s) \). If the same array appears on both sides of an assignment statement then the array is identified as a DP array and the statement is labeled as an update statement. A statement where the LHS is a DP array and RHS is an input variable or a constant is labeled as an initialization statement. In \(\Sigma(l, s) \), the temporary variables in \(s \) are replaced by the guarded expressions from the substitution store. This makes the labeling part of our tool robust even in presence of temporaries and procedure calls. For example, suppose we have \(t = x[l-1]; x[l] = t \). The second statement can be identified as an update statement through pattern matching only if we substitute \(x[l-1] \) in place of \(t \) on the RHS of the statement. In general, \(\Sigma(l, s) \) may contain multiple guarded statements. If \(\Sigma(l, s) = \{s_1, \ldots, s_n\} \), we require that all of \(s_1, \ldots, s_n \) satisfy the same pattern and get the same label. Extracting the feature values is now straightforward.

3.1.3 Clustering and Identifying Correct Submissions

All our features are discrete valued. Therefore, our clustering algorithm is very simple and works directly by checking equality of feature values. Once the clustering is done, we ask the instructor to identify a correct submission from each cluster. To reduce instruc-

Figure 6: Steps of the verified feedback generation algorithm for the DP update in the faulty submission in Figure 3.

- **a)** Successive equivalence queries and results
- **b)** Refinement steps and corrections suggested
tor’s efforts, we can employ some heuristics to rank candidates in a cluster and present them one-by-one to the instructor. For example, we can use a small set of tests or majority voting on some other features of submissions like the loop bounds of update loops.

The instructor can accept a submission as correct or add a modified version of an existing submission. If none of this is possible, the instructor can write a correct solution similar to the solutions in the cluster. If a new submission is added, we perform clustering again. The instructor may have correct solutions from a previous offering of the course if the assignment is repeated from a previous offering. The instructor can add them to the dataset even before we apply clustering to the submissions.

3.2 Verified Feedback Generation

Once the submissions are clustered and the instructor has identified a valid submission for each cluster, we proceed to the verified feedback generation phase. We check semantic equivalence of a submission from a cluster (called the candidate) with the instructor-validated submission from the same cluster (called the reference).

3.2.1 Variable and Control Correspondence

Program equivalence checking is an undecidable problem. In practice, a major difficulty is establishing correspondence between variables and control locations of the two programs [34]. We exploit the analysis information computed during feature extraction to solve this problem efficiently.

Let \(\sigma \) be a one-to-one function, called a variable map. \(\sigma \) maps the input variables and DP arrays of the reference to the corresponding ones of the candidate. To obtain a variable map, the input variables of the two submissions are matched by considering the order in which they are read and their types. The DP arrays are matched based on their types. If there are multiple DP arrays with the same type in both submissions then all type-compatible pairs are considered. This generates a set of potential variable maps and equivalence checking is performed for each variable map separately. The one which succeeds and produces the minimum number of corrections is used for communicating feedback to the student. In equivalence checking, we eliminate the occurrences of temporary variables using the substitution store computed during feature extraction. We therefore do not need to derive correspondence between temporary variables – which simplifies the problem greatly.

The feature extraction algorithm labels the input, initialization, update and output statements of a submission. We refer to these statements as labeled statements. The labeled statements give an easy way to establish control correspondence between the submissions. We now use the notion of top-level statements defined in Section 2.1. Let \(\mathcal{R} = [s_1^1, \ldots, s_k^1] \) be the list of all top-level statements of the reference such that 1) each statement in \(\mathcal{R} \) contains at least one labeled statement and 2) the order of statements in \(\mathcal{R} \) is consistent with their order in the reference submission. It is easy to see that the top-level statements in a submission are totally ordered. Let \(\mathcal{C} = [s_1^2, \ldots, s_k^2] \) be the similar list for the candidate submission. Without loss of generality, from now on, we assume that there is only one DP array in a submission and the top-level statements are (possibly nested) loops.

A (top-level) loop in \(\mathcal{R} \) or \(\mathcal{C} \) may contain multiple statements which have different labels. For example, a loop may read the input and also update the DP array. We call it a heterogeneous loop. Heterogeneous loops make it difficult to establish control correspondence between the statement lists \(\mathcal{R} \) and \(\mathcal{C} \). Fortunately, it is not difficult to canonicalize the statement lists using semantics-preserving loop transformations, well-known in the compilers literature [3]. Our algorithm first does loop splitting to split a heterogeneous loop into different homogeneous loops. It then does loop merging to coalesce different loops operating on the same variable. Specifically, it merges two loops reading the same input array. It also merges loops performing initialization to the same DP array. During merging, we ensure that there is no loop in-between the merged loops such that it reads from or writes to the same variable or array as the merged loops. In our experience, in most cases, these transformations work because loops reading inputs or performing initialization of DP arrays do not have loop-carried dependences or ad-hoc dependences between loops.

In contrast, by definition, loops performing DP updates do have loop-carried dependences. We therefore do not attempt loop merging for such loops. The feature 3 in Section 2.1 tracks the number of loops containing DP updates. Therefore, two submissions in the same cluster already have the same number of loops containing DP updates. Thus, clustering helps in reducing the variants that need to be considered during feedback generation.

Let \(R \) and \(C \) be the resulting statement lists for the reference and candidate submissions respectively. If they have the same length and at each index \(i \), the \(i \)th loops in the two lists 1) operate on the variables related by a variable map \(\sigma \), 2) the statements operating on the variables carry the same labels and 3) the loops have the same nesting depth and directions then we get the control correspondence \(\pi : R \rightarrow C \). If our algorithm fails to compute variable or control correspondence for the candidate then it exits without generating feedback, implicitly delegating it to the instructor.

3.2.2 Equivalence Queries

Let \(s_1^1 \) and \(s_2^1 \) be the top-level loops from the reference and the candidate such that \(\pi(s_1^1) = s_2^1 \). We first use the substitution map computed during feature extraction to eliminate temporary variables and procedure calls in \(s_1^1 \) and \(s_2^1 \) by equivalent guarded expressions over only DP variables. Let \(s_1 = \Sigma(s_1^1) \) and \(s_2 = \Sigma(s_2^1) \) where \(l_1 \) and \(l_2 \) are control locations of \(s_1^1 \) and \(s_2^1 \).

We formulate an equivalence query \(\Phi \) for the iteration spaces of \(s_1 \) and \(s_2 \). Let \(corr \) be the correspondence (equality) between the input variables, DP arrays, and loop indices of \(s_1 \) and \(s_2 \) at the matching nesting depths. We define \(iter \) to be the range of the loop indices in \(s_1 \) and \(guards \) to be the disjunction of all guards present in the loop body of \(s_1 \). Similarly, we have \(iter_2 \) and \(guards_2 \) for \(s_2 \).

The equivalence query \(\Phi \) is defined as follows:

\[
\Phi \equiv corr \implies \text{iter}_1 \land guards_1 \iff \text{iter}_2 \land guards_2
\]

This query provides more flexibility than using direct syntactic checking between the loop headers. For example, suppose \(s_1 \) is \(\text{for}(i=1, i=k, i++)(\text{true : } a) \) and \(s_2 \) is \(\text{for}(i=0, i'\leq n, i'+0)(i'>0 : x') \). \(s_1 \) executes \(a \) for \(1 \leq i \leq n \) and \(s_2 \) also executes \(x' \) for \(1 \leq i' \leq n \). A syntactic check will end up concluding that \(s_2 \) executes one additional iteration when \(i' = 0 \). But our equivalence query establishes equivalence between the iteration spaces as desired.

The formulation of the query \(\Psi \) to establish equivalence between loop bodies of \(s_1 \) and \(s_2 \) is as discussed in Section 2.2. Even though the submissions use arrays, we eliminate them from the queries. A loop body makes use of only a finite number of symbolic array expressions. We substitute each unique array expression in a query by a fresh scalar variable while encoding correspondence between the scalar variables in accordance with the variable map \(\sigma \). We overcome some stylistic variations when the order of operands of a commutative operation differs between the two submissions. For example, say \(s_1 \) uses \(x[i+j] \) and \(s_2 \) uses \(y[b+a] \) such that \(\sigma(i) = y \), \(\sigma(j) = a \) and \(\sigma(j') = b \). The expressions \(i+j \) and \(b+a \) are not identical under renaming but are equivalent due to commutativity.
Algorithm 1: Algorithm GENFEEDBACK

Input: A list \(Q = [(\Phi_1, \Psi_1), \ldots, (\Phi_k, \Psi_k)] \) of equivalence queries
Output: A list of corrections to the candidate submission

1. foreach \((\Phi_i, \Psi_i) \in Q\) do
 2. if \(\forall a \neq \Psi_i \) then
 3. Suggest corrections to make the iteration spaces of the \(i \)th statements of the two submissions equal
 4. end
 5. Let \(\Psi_i \equiv \text{pre} \land \varphi_1 \land \varphi_2 \implies \text{post} \)
 6. \(k \leftarrow 0 \)
 7. repeat
 8. \(k \leftarrow k + 1 \)
 9. if \(\Psi_i \neq \Psi_i \) then break
 10. else
 11. Let \(a \neq \Psi_i \) be a counter-example
 12. Let \(g_1 : s_1 \in \varphi_1 \) and \(g_2 : s_2 \in \varphi_2 \) s.t. \(a \models g_1 \) and \(a \not\models g_2 \)
 13. if \(\text{pre} \implies (g_1 \implies g_2) \) then
 14. \(\varphi_i \leftarrow \varphi_i \land g_2/g_1 \)
 15. Suggest computation of \(\varphi(s_1) \) instead of \(s_2 \) under \(g_2 \)
 16. else
 17. \(h_2 \leftarrow g_2 \land \lnot g_1 \)
 18. \(h_2' \leftarrow g_2 \land \lnot g_1 \)
 19. \(\varphi_i \leftarrow \varphi_i \land g_2/g_1 \)
 20. Suggest computation of \(\varphi(s_1) \) instead of \(s_2 \) under \(h_2 \)
 21. end
 22. end
 23. until \(k < \delta \)
 24. if \(k = \delta \) then Suggest a correction to replace \(\varphi_2 \) by \(\varphi(s_1) \)
 25. end

To take care of this, we force a fixed ordering among variables in the two submissions for commutative operators. Sometimes, the instructor may include some constraints over input variables as part of the problem statement. In the equivalence queries, our algorithm takes input constraints into account and also adds array bounds checks. We omit these details due to space limit.

3.2.3 Counter-Example Guided Feedback Generation

Algorithm 1 is our counter-example guided feedback generation algorithm. Its input is a list \(Q \) of equivalence queries where each query \((\Phi_i, \Psi_i)\) corresponds to the \(i \)th statement in the two submissions. \(\Phi_i \) encodes the equivalence of iteration spaces and \(\Psi_i \) of the loop bodies. If the \(i \)th statements are not loops, \(\Phi_i \) is true and \(\Psi_i \) just checks equivalence of the loop-free statements. The output of the algorithm is a list of corrections to the candidate submission.

Algorithm 1 iterates over the query list (line 1). For a query \((\Phi_i, \Psi_i)\), it first checks whether \(\Phi_i \) is logically valid or not. If it is not then the algorithm suggests a correction to make the iteration spaces of the \(i \)th statements (loops) of the two submissions equal (lines 2-4). It then enters a refinement loop for \(\Psi_i \) at lines 7-24.

During each iteration of the refinement loop, it checks whether \(\Psi_i \) is valid. If yes, it exits the loop (line 9). Otherwise, it gets a counter-example \(a \) from the SMT solver and finds the guarded statements that are satisfied by \(a \). Let \(g_1 : s_1 \in \varphi_1 \) and \(g_2 : s_2 \in \varphi_2 \) be those statements (line 12). The formulae \(\varphi_1 \) and \(\varphi_2 \) correspond to the encodings of the loop bodies of the reference and the candidate respectively. Note that the conversion of statements to guarded equality constraints (Section 2.2) ensures that the guards within \(\varphi_1 \) and within \(\varphi_2 \) are pairwise disjoint.

Let \(\hat{\sigma} \) be the variable map which is same as the variable correspondence \(\sigma \) but augmented with the correspondence between loop indices at the same nesting depths for the \(i \)th statements. The function \(\hat{\sigma} \) is lifted in a straightforward manner to expressions and assignments. The algorithm checks whether the guards \(g_1 \) and \(g_2 \) are equivalent (line 13). If they are then the fault must be in the assignment statement \(s_2 \). It therefore defines \(\varphi_2' \) by substituting \(s_2 \) by \(\varphi(s_1) \) in \(\varphi_2 \) (line 14) and refines \(\Psi_i \) by replacing \(\varphi_2 \) by \(\varphi_2' \) (line 15). It suggests an appropriate correction for the candidate submission (line 16). The other case when the guards are not equivalent leads to the other branch (lines 17-22). The algorithm now splits the guarded assignment \(g_2 : s_2 \) to make it conform to the reference under \(h_2 \equiv g_2 \land \hat{\varphi}(g_1) \), whereas, for \(h_2' \equiv g_2 \land \hat{\varphi}(-g_1) \), the candidate can continue to perform \(s_2 \) (line 18). It computes \(\varphi_2' \) by replacing \(g_2 : s_2 \) by \(h_2 : \hat{\varphi}(s_1) \) and \(h_2' : s_2 \) (line 19). It then refines \(\Psi_i \) by replacing \(\varphi_2 \) by \(\varphi_2' \) (line 20) and suggests an appropriate correction for the candidate submission (line 21). The refinement loop terminates when no more counter-examples can be found (line 9) and thus, progressively finds all semantic differences between \(i \)th statements of the two submissions.

Each iteration of the refinement loop eliminates a semantic difference between a pair of statements from the two submissions and the loop terminates after a finite number of iterations. In practice, giving a long list of corrections might not be useful to the student if there are too many mistakes in the submission. A better alternative might be to stop generating corrections after a threshold is reached. We use a constant \(\delta \) to control how many refinements should be attempted (line 24). If this threshold is reached then the algorithm suggests a total substitution of \(\hat{\varphi}(s_1) \) in place of \(\varphi_2 \) (line 25). In our experiments, we used \(\delta = 10 \).

Due to the explicit verification of equivalence queries, our algorithm only generates correct feedback. The feedback for the declarations of the candidate are obtained by checking dimensions of the corresponding variables according to \(\sigma \).

4. IMPLEMENTATION

We implemented our technique in a tool named CoderAssist and is available at https://bitbucket.org/iiscseal/coderassist. It analyzes C programs. We have implemented the source code analysis using the Clang front-end of the LLVM framework [26] and use Z3 [10] for SMT solving. We presently do not support pointers arithmetic.

In the pre-processing step, CoderAssist performs some syntactic transformations. It rewrites compound assignments such as \(x += y \) to \(x = x + y \). A code snippet of the form: \(\text{scanf("%d", \&a[0]);} \) for \((i = 1; i < n; i++) \text{scanf("%d", \&a[i]);}\), where the input array is read in multiple statements is transformed to \((i = 0; i < n; i++) \text{scanf("%d", \&a[0]);} \). Sometimes, students read a scalar variable and then assign it to an array element. CoderAssist eliminates the use of the scalar variable. Another common pattern is to read a sequence of input values into a scalar one-by-one and then use it in the DP computation. For example, consider the code snippet: \(\text{for (i = 0; i < n; i++) \{ scanf("%d", \&x); dp[i][j] = dp[i-1][j] + x; \}} \). It does not use an array to store the sequence of input values. We declare an array and rewrite the snippet to use it. When feedback is generated for the submission, an explanatory note about the input array is added.

Many students, especially beginners, write programs with convoluted conditional control flow, and unnecessarily complex expressions. In addition, the refinement steps of our counter-example guided feedback generation algorithm may generate complex guards. To present clear and concise feedback even in the face of these possibilities, in the post-processing step, CoderAssist simplifies guards in the feedback using the SMT solver.

5. EXPERIMENTAL EVALUATION

To assess the effectiveness of CoderAssist, we collected submissions to the following 4 DP problems on CodeChef: 1) SUM-
4) the knapsack problem

TRIAN described in the Introduction, 2) a variant of the matrix path problem MGCRNK, 3) the subset sum problem MARCA1 and 4) the knapsack problem PPTEST.

We selected submissions that implemented an iterative DP strategy in C. A user can submit solutions any number of times. We picked the latest submissions from individual users. These represent their best efforts and can benefit from feedback. We do not consider submissions that either do not compile or crash on CodeChef’s tests. To enable automated testing on CodeChef, the submissions had an outermost loop to iterate over test cases – we removed this loop automatically before further analysis.

Table 1 shows the number of submissions for each problem. SUMTRIAN had the maximum number of submissions (1983) and PPTEST had the minimum (41). There were a total of 2226 submissions with an average 32 LOC. Together, this is a codebase of over 70 KLOC written by 1860 students from 250 institutions. These submissions employ a wide range of coding idioms and many possible solution approaches, both correct and incorrect; making it challenging to automatically generate feedback on them.

5.1 Effectiveness of Clustering

Our features were quite effective in clustering submissions by their solution strategies. Since we do not include features representing low-level syntactic or structural aspects of submissions, the clustering resulted in only a few clusters for each problem, without compromising our ability to generate verified feedback. Table 1 gives the number of clusters. The number of clusters increased gracefully from the smallest problem (by the number of submissions) to the largest one. The smallest problem PPTEST yielded only 2 clusters for 41 submissions, whereas, the largest problem SUMTRIAN yielded 80 clusters for 1983 submissions. Our manual evaluation revealed that in each cluster, the solutions were actually following the same DP strategy.

The small number of clusters reduces the burden on the instructor significantly. Instead of evaluating 2226 submissions separately, the instructor is required to look at representatives from only 114 clusters. CodeChef uses test suites to classify problems into correct and incorrect. As a simple heuristic, we randomly picked one of the submissions marked as correct by CodeChef in each cluster and manually validated it. As shown in Table 1, this gave us correct representatives for 107/114 clusters across the problems. The remaining 7 clusters seemed to follow some esoteric strategies and we manually added a correct solution to each of them. Clustering also helps the instructor get a bird’s eye view of the multitude of solution strategies by revealing the popular or error-prone ones.

5.2 Effectiveness of Feedback Generation

CoderAssist verifies a submission from a cluster against the manually validated or added correct submission from the same cluster. Table 2 shows the number of 1) submissions verified as correct (✓), 2) submissions for which faults were identified and corrections suggested (X) and 3) submissions which our algorithm could not handle (?). Across the problems, 1122 submissions amounting to 50% were verified to be correct, with the maximum at 53% for SUMTRIAN and the minimum at 7% for PPTEST. For a total of 789 submissions amounting to 35%, some corrections were suggested by our tool. The maximum percentage of submissions with corrections were for PPTEST at 71% and the minimum was 33% for SUMTRIAN. Many submissions had multiple faults. Table 2 shows the average number of corrections over faulty submissions for each problem. PPTEST required the maximum number of corrections of 12.7 on average. In all, CoderAssist succeeded in either verifying or generating verified feedback for 85% submissions.

For the remaining 315 (15%) submissions, our tool could neither generate feedback nor verify correctness. These submissions need manual evaluation. MARCA1 had the maximum percentage of unlabeled submissions at 24% and MGCRNK had the minimum at 12%. These arise either because the SMT solver times out (we kept the timeout of 3s for each equivalence query), or due to the limitations of the verification algorithm or the implementation.

These results on the challenging set of DP submissions are encouraging and demonstrate effectiveness of our methodology and technique. Even if we assume that all 315 unhandled submissions are faulty, we could generate verified feedback for 71% faulty submissions. In comparison, on a set of introductory programming assignments, Singh et al. [46] report that 64% of faulty submissions could be fixed using manually provided error models. Our counter-example guided feedback generation technique guarantees correctness of the feedback. We would have liked to communicate the feedback to the students and assess their responses. Unfortunately, their contact details were not available to us.

Diversity of Feedback and Personalization.

The feedback propagation approaches [20, 41] suggest that the same feedback text written by the instructor can be propagated to all submissions within a cluster. We found that this is not practical and the submissions within the same cluster require heterogeneous feedback. Figure 7 shows the distribution of submissions in a cluster of SUMTRIAN by the type of feedback. We only highlight feedback over the logical components of a submission: initialization (I), update (U) and output (O). Feedback related to type declarations
The faults found and corrected include: incorrect loop headers, initialization mistakes including missing or spurious initialization, missing cases in the DP recurrence, errors in expressions and guards, incorrect dimensions, etc.

5.3 Comparison with CodeChef

CoderAssist was able to verify 12 submissions as correct that were tagged by CodeChef as incorrect. This was surprising because CodeChef uses tests which should not produce such false positives. On investigation, we found that the program logic was indeed correct, as verified by CoderAssist. The faults were localized to output formatting, or in custom input/output functions.

Due to the incompleteness of testing, CodeChef did not identify all faulty submissions (false negatives). This can hurt students since they may not realize their mistakes. We checked the cases when CodeChef tagged a submission as correct but our tool issued some corrections. For 64 submissions, CoderAssist identified that the submissions were making spurious initializations to the DP array. For 112 submissions, it identified that the DP update was performed for additional iterations than required. Importantly, CoderAssist detected out-of-bounds array accesses in 99 submissions. In 265 distinct submissions, CoderAssist identified one or more of the faults described above, whereas CodeChef tagged them as correct! Thus, our static technique has a qualitative advantage over the test-based approach of online judges.

5.4 Performance

We ran our experiments on an Intel Xeon E5-1620 3.60 GHz machine with 8 cores and 24GB RAM. CoderAssist runs only on a single core. On an average, it generated feedback in 1.6s including the time for clustering and excluding the time for identifying correct submissions manually. The maximum time taken was 2m.

5.5 Limitations and Threats to Validity

Our technique fails for submissions that have loop-carried dependencies over scalar variables apart from the loop index variables, submissions that use auxiliary arrays and submissions for which pattern matching fails to label statements. We inherit the limitations of SMT solvers in reasoning about non-linear constraints and program expressions with undefined semantics, such as division by 0. Most of the unhandled cases arise from these limitations.

CoderAssist cannot suggest feedback for errors in custom input/output functions, output formatting, typecasting, etc. It may provide spurious feedback enforcing stylistic conformance with the instructor-validated submission. For example, if a submission indexes into arrays from position 1 but the instructor-validated submission indexes from 0, CoderAssist generates feedback requiring the submission to follow 0 based indexing. This may correct some misconception about array indexing of the student. Nevertheless, these differences can be handled during pre-processing or through SMT solving with additional annotations. Our implementation currently handles only a frequently used subset of C constructs.

There can be faults in our implementation that might have affected our results. To address this threat, we manually checked the
6. RELATED WORK

Program Representations and Clustering.

In order to cluster submissions effectively, we need strategies to represent both the syntax and semantics of programs. Many clustering approaches use only edit distance between submissions [15, 44], while others use edit distance along with test-based similarity [20, 36, 12]. We use neither of these. Glassman et al. [13] advocate a hierarchical technique. An interesting recent direction is to use deep learning to compute and use vector representations of programs [40, 41, 33]. Peng et al. [40] propose a pre-training technique to automatically compute vector representations of different AST nodes which is then fed to a tree-based convolution neural network [33] for a classification task. Piece et al. [41] propose a recursive neural network to capture both the structure and functionality of programs. The functionality is learned using input-output examples. But the class of programs considered in [41] is very simple. It only handles programs which do not have any variables.

Since our experiments were focused on iterative DP solutions, we designed features that capture the DP strategy. The above approaches are more general but unlike us, they may not put the submissions in Figure 2 and 3 in the same cluster. Our algorithm extracts features in the presence of temporary variables and procedures, and might be useful in other contexts as well.

Feedback Generation and Propagation.

The idea of comparing instructor provided solutions with student submissions appears in [2]. It uses graph representation and transformations for comparison of Fortran programs. Xu and Chee [48] use richer graph representations for object-oriented programs. Rivers and Koedinger [44] use edit distance as a metric to compare graphs and generate feedback. Gross et al. [15] cluster student solutions by structural similarity and perform syntactic comparisons with a known correct solution to provide feedback. In contrast, we generate verified feedback but for the restricted domain of DP.

Alur et al. [4] develop a technique to automatically grade automatons constructions using a pre-defined set of corrections. Singh et al. [46] apply sketching based synthesis to provide feedback for introductory programming assignments. In addition to a reference implementation, the tool takes as input an error model in the form of correction rules. Their error model is too restrictive to be adapted to our setting that requires more sophisticated repairs and that too for a more challenging class of programs. Gulwani et al. [17] address the orthogonal issue of providing feedback to address performance issues in student submissions.

The idea of exploiting the common patterns in DP programs has been used by Pu et al. [43] but for synthesis of DP programs. The clustering-based approaches [20, 41] propagate the instructor-provided feedback to all submissions in the same cluster, whereas we generate personalized and verified feedback for each submission in a cluster separately. OverCode [12] also performs clustering of submissions and provides a visualization technique to assist the instructor in manually evaluating the submissions.

Program Repair and Equivalence Checking.

Genetic programming has been used to automatically generate program repairs [5, 11, 27]. These approaches are not directly applicable in our setting as the search space of mutants is very large. Further, GenProg [27] relies on redundancy present in other parts of the code for fixing faults. This condition is not met in our setting. Software transplantation [18, 6] transfers functionality from one program to another through genetic programming and slicing. Prophet [30] learns a probabilistic, application independent model of correct code from existing patches, and uses it to rank repair candidates from a search space. These are generate-and-validate approaches which rely on a test suite to validate the changes. In comparison, we derive corrections for a faulty submission by program equivalence checking with a correct submission.

Konighopher et al. [25] present a repair technique using reference implementations. Their fault model is restrictive and only considers faulty RHS. Many approaches rely on program specifications for repair, including contracts [39, 47], LTL [23], assertions [45] and pre-post conditions [14, 28, 19]. Recent approaches that use tests to infer specifications and propose repairs include SemFix [37], MintHint [24], DirectFix [31] and Angelix [32]. These approaches use synthesis [22], symbolic execution [9] and partial MaxSAT [10] respectively. Both DirectFix and Angelix use partial MaxSAT but Angelix extracts more lightweight repair constraints to achieve scalability. SPR [29] uses parameterized transformation schemas to search over the space of program repairs. In contrast, we use instructor-validated submissions and a combination of pattern matching, static analysis and SMT solving.

Automated equivalence checking between a program and its optimized version has been studied in translation validation [42, 35, 7]. Partush and Yahav [38] design an abstract interpretation based technique to check equivalence of a program and its patched version. In comparison, our technique performs equivalence check between programs written by different individuals independently.

All these approaches are designed for developers and deal with only one program at a time. Our technique targets iterative DP solutions written by students and works on a large number of submissions simultaneously. It combines clustering and verification to handle both the scale and variations in student submissions.

7. CONCLUSIONS AND FUTURE WORK

We presented semi-supervised verified feedback generation to deal with both scale and variations in student submissions, while minimizing the instructor’s efforts and ensuring feedback quality. We also designed a novel counter-example guided feedback generation algorithm. We successfully demonstrated the effectiveness of our technique on 2226 submissions to 4 DP problems.

Our results are encouraging and suggest that the combination of clustering and verification can pave way for practical feedback generation tools. There are many possible directions to improve clustering and verification by designing sophisticated algorithms. We plan to investigate these for more problem domains.

ACKNOWLEDGEMENTS

We thank CodeChef for allowing us to use programs submitted on their website in our experimental evaluation.

8. REFERENCES

