
A PVS based Framework for Validating Compiler Optimizations

Aditya Kanade Amitabha Sanyal Uday Khedker

Dept. of Computer of Science and Engineering, IIT Bombay.
E-mail: {aditya,as,uday}@cse.iitb.ac.in

Abstract

An optimization can be specified as sequential compo-
sitions of predefined transformation primitives. For each
primitive, we can define soundness conditions which guar-
antee that the transformation is semantics preserving. An
optimization of a program preserves semantics, if all ap-
plications of the primitives in the optimization satisfy their
respective soundness conditions on the versions of the input
program on which they are applied. This scheme does not
directly check semantic equivalence of the input and the op-
timized programs and is therefore amenable to automation.

Automating this scheme however requires a trusted
framework for simulating transformation primitives and
checking their soundness conditions. In this paper, we
present the design of such a framework based on PVS. We
have used it for specifying and validating several optimiza-
tions viz. common subexpression elimination, optimal code
placement, lazy code motion, loop invariant code motion,
full and partial dead code elimination, etc.

1. Introduction

A compiler optimizer analyzes and transforms programs
to improve their run-time behavior. This allows program-
mers to focus on functionality of programs without having
to bother about efficiency of the generated code. Optimiz-
ers have therefore become an integral part of the modern
compilers. However, a mistake in the design or the imple-
mentation of an optimizer can proliferate in the form of bugs
in the softwares compiled through it.

Like any critical software, it is desirable to have a
verified implementation of optimizers. However, the
verification techniques are not sophisticated enough to
verify complex softwares like optimizers mechanically.

The issue of soundness of optimizers is therefore ad-
dressed at two levels: (1) One time guarantees are obtained
at the design level by verifying optimization specifications
and (2) run-time guarantees are obtained at the implemen-
tation level by validating optimizations performed.

Both these approaches involve proofs of semantic equiv-
alences between the input and the optimized programs.
However, they are usually tedious. Even in the case of vali-
dation where semantic equivalence is to be shown for a par-
ticular execution, it cannot be accomplished with ease. This
complexity can be conquered by taking advantage of the
fact that optimizations with similar objectives employ simi-
lar program transformations. For example, “replacement of
some occurrences of an expression by a variable” is a trans-
formation which is common to optimizations like common
subexpression elimination, lazy code motion, loop invariant
code motion, and several others whose aim to avoid unnec-
essary recomputations of a value.

In [4], we have identified a set of common transforma-
tion primitives which can be used to specify a large class of
optimizations by sequential composition. For each primi-
tive, we have defined soundness conditions which guarantee
that the transformation is semantics preserving. The pro-
gram points which satisfy soundness conditions are called
safe application points. If the transformation is applied to
a subset of these points, the resulting program is semanti-
cally equivalent to the input program. Proving sufficiency
of soundness conditions for semantics preservation under
the respective transformation is a one time affair. Since the
primitives are small-step transformations, these proofs are
much easier than similar proofs for optimizations. This ap-
proach reduces proving the soundness of an optimization
to showing that the soundness conditions of the underlying
primitives are satisfied on the versions of the input program
on which they are applied. This is much simpler than di-
rectly proving semantics preservation for an optimization.

This approach works at the design level by verifying
soundness of specifications. In [4], we have additionally
proposed how this technique can also be used for reducing
efforts required for validating actual implementations.

An obvious approach is that of validating against a
specification. First a specification of an optimizer is proved
sound and then their inputs and outputs are matched on a
run-by-run basis. There is however a simpler approach of
validating against a trace which does not even require prov-
ing soundness of specifications.



M1 SIMULATOR Mk+1

P OPTIMIZER

(instrumented)
P ′

α abstraction
function

αtrace τ =
T1(π1); . . . , Tk(πk);

Ti(πi)Mi Mi+1

πi ⊆ ϕi(Mi)?

Figure 1. Validating against a trace

An optimizer can be instrumented to generate a trace τ
of its execution on a program P as a sequence of appropri-
ately instantiated primitives T1, . . . , Tk as shown in Fig. 1.
The program points to which these primitives are applied
are π1, . . . , πk. The abstract representation of the input pro-
gram is M1. The transformation Ti(πi) is applied on the
abstraction Mi and results in the abstraction Mi+1. The op-
timized program P ′ is semantically equivalent to the input
program P if (1) the abstract representation of P ′ matches
the abstraction Mk+1 obtained by simulating the trace on
the abstraction M1 and (2) the soundness conditions ϕi of
the transformation primitives Ti are satisfied on the abstrac-
tions Mi, that is the actual application points πi are a subset
of the safe application points of the primitive Ti on the ab-
straction Mi.

Similar to verification, this validation scheme also takes
advantage of common patterns of transformations and of
semantic equivalence proofs. This scheme does not directly
check semantic equivalence of the input and the optimized
programs and is therefore amenable to automation.

The soundness of the validation scheme in Fig. 1 is sub-
ject to the soundness of the abstraction function and the sim-
ulation environment. The instrumented optimizer can po-
tentially generate an inconsistent trace. However, since the
abstraction obtained by simulating the trace is matched with
the abstraction of the optimized program, the inconsistency
is detected. We have shown separately on paper that the
transformation primitives preserve semantics if their sound-
ness conditions are satisfied. In these proofs, we use some
properties of the transformation primitives. For the purpose
of this paper, we assume that the definitions of the primi-
tives encoded in the validation framework satisfy the prop-
erties used in the proofs of semantics preservation.

In this paper, we present the design of a simulation
framework based on the ground evaluator of the trusted
PVS system. We have specified and validated several op-
timizations in our framework. These specifications are not
only executable but having been written in PVS are also
amenable to formal verification.

We summarize the contributions of this work as follows:

• A trusted framework for simulating and validat-
ing optimization specifications. Soundness condi-
tions model global program properties and are defined
in a temporal logic. We have given boolean matrix al-
gebraic definitions of temporal operators and transfor-
mation primitives. These definitions can be evaluated
in the PVS ground evaluator.

• Automatic generation of verification conditions.
Besides the contribution to optimization validation,
our work is also interesting in its use of PVS. One
such contribution is a utility to automatically gener-
ate verification conditions by probing the internal rep-
resentation of PVS theories. If the verification con-
ditions are satisfied on a program, the optimization
preserves semantics of the program. These conditions
also constitute the proof obligations for verifying the
soundness of the optimization specification.

• Validation of several optimizations. As a proof of
concept, we have specified several optimizations. We
have simulated them on various programs and have
validated their simulation traces. The optimizations
that are considered include common subexpression
elimination, optimal code placement, lazy and loop in-
variant code motion, full and partial dead code elimi-
nation, etc. This also demonstrates that our framework
is suitable for rapid prototyping of optimizations.

The rest of the paper is organized as follows: Section 2
describes the PVS system and the architecture of the val-
idation framework. Section 3 explains the specification
mechanism. Sections 4–5 discuss the basic theories in the
framework. Section 6 explains the simulation and valida-
tion mechanism. Section 7 discusses related work. Sec-
tion 8 concludes and proposes future directions.

2. Architecture of the Validation Framework

The Prototype Verification System (PVS) [10] is an in-
teractive system used for developing and verifying formal
specifications. In our earlier work [4], we have explained
its use in verification of optimization specifications. PVS
also provides a useful facility of expression evaluation. We
can therefore use PVS as an integrated environment for both
verification and validation of optimization specifications.

Fig. 2 shows the architecture of the PVS based validation
framework. The unshaded boxes denote the components of
PVS and the shaded boxes denote the extensions that we
have added to the PVS core.

2



PVS Core Extensions

Prelude theories
PVS language TTL

OVerification

P & TC PC GE VC Generator

PVS Emacs Interface

Figure 2. Schematized Architecture of the
PVS based Validation Framework

Overview of the PVS system. In this paper, we present
the validation framework that uses the PVS ground evalua-
tor (GE) for simulating specifications. Readers do not have
to know the entire PVS proof engine to understand this pa-
per. Our specification language is based on the PVS lan-
guage and we explain it as and when needed.

Optimization specifications are written as PVS theories
in the PVS Emacs interface and are saved in files with .pvs
extension. These specifications are written in the PVS lan-
guage extended with a specialized vocabulary. The PVS
language is based on higher-order logic, i.e., functions are
first-class objects and quantification over general objects is
supported. It is a typed language and supports powerful typ-
ing mechanisms like subtyping and dependent typing. PVS
has a set of predefined theories called prelude. The theo-
ries in the prelude define many basic concepts and serve as
building blocks for user defined theories.

All specification processing functionalities of PVS are
hooked into the Emacs interface. Upon starting a PVS ses-
sion, the customized Emacs interface is loaded which in
turn loads the PVS Lisp image. The parser checks theories
for syntactic consistency and builds an internal represen-
tation that is used by other components of PVS. The type-
checker analyzes theories for semantic consistency and adds
semantic information to the internal representation built by
the parser. The parser and the typechecker are denoted by
(P & TC) box in Fig. 2. PVS provides an interactive proof
checker (PC) for deriving proofs of formulae declared in a
specification.

The PVS ground evaluator (GE) is an environment in
which ground expressions, i.e., executable definitions ap-
plied to concrete data, are evaluated. The PVS ground
evaluator consists of a PVS to Common Lisp translator, an
interactive read-eval-print interface, and a proof rule [7].
The unexecutable constructs in PVS are uninterpreted sym-
bols, non-bounded quantification, and higher-order rela-
tions. The PVS ground evaluator can be used for rapid pro-
totyping and validation of specifications.

The Validation Framework. We extend the prelude with
two libraries: TTL and OVerification. These libraries are
collections of theories formulating the basic concepts re-
quired for specifying optimizations.

The TTL library contains definitions of temporal oper-
ators and graph transformations. TTL is an abbreviation
for the Temporal Transformation Logic which is used in the
verification of optimization specifications [4]. The tempo-
ral operators and the graph transformations are defined in a
boolean matrix algebra. This novel formulation facilitates
simple algebraic proofs of soundness of the TTL inference
rules. Additionally, our formulation of the boolean matrix
algebra is operational and written completely in the exe-
cutable fragment of the PVS language. This makes model
checking of temporal formulae and simulation of graph
transformations possible in the PVS ground evaluator.

The OVerification library defines an abstraction of pro-
grams which is based on control flow graph representation
of three–address code. It also builds the vocabulary for writ-
ing specifications of optimizations by defining local data
flow properties and transformation primitives. The primi-
tives define the content and the control flow of the trans-
formed program in terms of the input program. The control
flow transformations are expressed in terms of the graph
transformations defined in the TTL library. The theories in
the OVerification library also define the soundness condi-
tions of the transformation primitives. All these definitions
are written in the executable fragment of the PVS language.
These definitions are operational and hence can be simu-
lated directly in the PVS ground evaluator.

We have developed a utility called VC generator to gen-
erate verification conditions from specifications. Like other
components of the PVS system, it is also hooked into
the Emacs interface. It probes the internal representation
of PVS specifications created by the parser and the type-
checker. It identifies usage of programs transformations and
emits appropriate verification conditions in a separate PVS
file. These conditions are evaluated in the ground evaluator
to validate a particular optimization run. These conditions
also form the proof obligations for the verification of the
optimization specification.

3. Specifying Optimizations

In this section, we discuss the specification mechanism.
We have specified several optimizations including common
subexpression elimination, lazy code motion, loop invariant
code motion, full and partial dead code elimination, etc. We
use optimal code placement [13] as an example. We first
present some local data flow properties and then explain the
specification mechanism for analyses and transformations.

3



3.1. Local Data Flow Properties

We consider control flow graph based abstraction of
three–address code. The control flow graph is denoted by
cfg. Its transition relation is given as a boolean adjacency
matrix. It has a single entry and a single exit which are de-
noted by a list of boolean values each with only the elements
at the appropriate positions set to true.

A list of statements L gives the contents of a program.
The ordering of the statements in the list implicitly deter-
mines the program points to which they correspond. We
consider four kinds of statements: skip, assignment, condi-
tional branching, and halt. Unconditional branching is mod-
eled by directed edges.

A local data flow property defines statement-level condi-
tions. Value of a local data flow property is given by a list of
booleans. The element corresponding to a program point is
set to true only if the property is satisfied by the statement at
the program point. We define several local data flow prop-
erties found in the literature as part of the OVerification li-
brary. These properties can be used for specifying optimiza-
tions. Below we summarize the local data flow properties
used in this paper.

Consider a program denoted by prog.

• Mod(prog,e) holds at a program point if an operand of
the expression e is assigned at the program point.

• Antloc(prog,e) holds at a program point if the expres-
sion e is computed at the program point.

• Transp(prog,e) holds at a program point if no operand
of the expression e is assigned at the program point.

• Comp(prog,e) holds at a program point if the expres-
sion e is computed at the program point and none of
its operands is assigned at that point.

• Use(prog,v) holds at a program point if the variable v
is an operand of the expression computed at the point.

• Def(prog,v) holds at a program point if the variable v is
assigned at the program point.

• AssignStmt(prog,v,e) holds at a program point if the
statement at the program point is v = e.

3.2. Specifying Analyses

Consider the program shown in Fig. 3. The nodes repre-
sent the program points and the edges represent the flow of
control. The expression a+b is computed in nodes 2, 7, 10,
11, and 12. Several of these nodes share common execu-
tion paths. By placing computations of a+b only in certain
common dominators of these nodes, the number of compu-
tations of a+b in the program can be reduced.

Nec nodes

Ear nodes

1

x = a+b2 3

4

5

6y = a+b7 8

9 y = a+b10

x = a+b11 x = a+b12

13

Figure 3. Optimal Code Placement Analysis

The optimization should however preserve semantics of
the program being transformed. The insertions of compu-
tations of a+b should not give rise to computation of new
values along any paths. Further, the original computations
of a+b should only be replaced by a variable which will
evaluate to the same value as the expression a+b. We now
explain the required program analyses.

An expression can be placed safely at a program point if
along all forward paths from the point it is computed and
none of its operands are assigned before the computation.
This is specified as Nec (necessity) analysis in Fig. 4. It
takes a program prog and an expression e and returns a list
of booleans. If an element in the list is true then the property
is satisfied at the corresponding program point.

Nec is a global data flow property, i.e., it relates data
flow information along control flow paths. We use com-
putational tree logic with branching past (CTLbp) [5] for
specifying global data flow properties. A Kripke structure
forms a model for formulae of CTLbp. It consists of a set
of states, a binary transition relation over the states, a set
of atomic propositions, and a labeling function which asso-
ciates labels with states. A program abstraction together
with local data flow properties can be seen as a Kripke
structure. The program points (or nodes) form the states
of the Kripke structure. The control flow transition relation
defines the transition relation of the Kripke structure. Local
data flow properties and their values determine the set of
atomic propositions and the labeling function respectively.

CTLbp is a branching-time temporal logic. A state in
its model can have multiple predecessors and multiple suc-

4



Nec(prog, e) : list [bool ] = AW(prog‘cfg, /(Mod(prog, e) + prog‘exit) , Antloc(prog, e))

Ear(prog, e) : list [bool ] = /(AY(prog‘cfg, AS(prog‘cfg, /(Mod(prog, e)), Nec(prog, e)−Mod(prog, e))))

Ocp(prog, e) : list [bool ] = Ear(prog, e) ∗ Nec(prog, e)

Figure 4. Specification of OCP Analyses

cessors. In CTLbp, past is finite whereas future is infinite.
We define the CTLbp operators in a modal algebra. These
definitions are developed as part of the TTL library. In our
notation, an operator takes the control flow graph of a pro-
gram as an additional (first) parameter. Definitions of the
CTLbp operators are explained in section 4.1.

The property Nec is defined using the weak until opera-
tor AW and reads as follows: Along all forward paths, the
expression e is not Mod-ified and the program exit is not en-
countered until an Antloc computation of the expression e
is encountered. For an infinite path due to a program loop,
the expression e is not Mod-ified and the program exit is not
encountered, ever. The “/” operator is negation extended to
boolean lists and matrices. The “+” operator is disjunction
extended to boolean lists and matrices. Fig. 3 shows the
program points which satisfy the Nec property for a+b.

A program point is earliest if the expression e cannot be
moved to its predecessors without violating the safety (Nec)
property. This property is defined as Ear analysis. The op-
erator AY reads as “for all predecessors”. The operator AS
is the counter part of AW in the backward direction. The
property Ear reads as follows: It is not the case that for all
backward paths starting with the predecessors, the expres-
sion e is not Mod-ified until a program point satisfying Nec
but not Mod is reached. Fig. 3 shows the program points
which satisfy the Ear property for a+b.

The placement points are identified by the property Ocp.
These points satisfy the Nec and Ear properties. The “∗” op-
erator is conjunction extended to boolean lists and matrices.

3.3. Specifying Transformations

The optimal code placement optimization is performed
in three steps: (1) Insert a new predecessor each to the Ocp
points, (2) Assign the expression e to a new variable t at
the newly inserted points, and (3) Replace all the original
computations of the expression e (i.e., except those inserted
in the second step) by the variable t . Fig. 5 shows the opti-
mized version of the program in Fig. 3.

We define the small-step transformations corresponding
to the above steps as transformation primitives. They are
also used in specifications of other optimizations with sim-
ilar transformation patterns, e.g., lazy code motion, loop in-
variant code motion, etc. We discuss the definitions of these
transformation primitives in section 5.1.

New nodes

Optimized

1

x = t2 3

4

5

6y = t7 8

9 y = t10

x = t11 x = t12

13

t = a+b14

t = a+b15

Figure 5. Optimized Program

The optimization is specified formally as the function
OCP Transformation as shown in Fig. 6. It takes a pro-
gram prog1 and an expression e and returns the optimized
version of prog1. For readability, we have simplified the
syntax slightly.

If the expression e is not computed in prog1, the opti-
mization returns prog1 as it is. The function Expressions
gives the expressions computed in a program. The program
points satisfying the Ocp property in prog1 are denoted by
ocppoints. The program points where the expression e is
computed (Antloc) in prog1 are denoted by antloc. IP is a
transformation primitive which takes a program and a set
of program points and inserts a new predecessor to each of
them. In order to keep the specifications executable, we
represent a set of program points by a list of booleans. If
an element in the list is true then the program point at the
corresponding location is a member of the set. The new
program points are distinct from the program points of the

5



OCP Transformation(prog1, e): Program =
IF member(e, Expressions(prog1)) THEN

LET ocppoints = Ocp(prog1, e),
antloc = Antloc(prog1, e),
prog2 = IP(prog1, ocppoints),
newpoints = prog2‘cfg‘ns− prog1‘cfg‘ns,
t = NEWVAR(prog2),
prog3 = IA(prog2, newpoints, t, e)

IN RE(prog3, antloc, t)
ELSE prog1 ENDIF

Figure 6. Spec. of OCP Transformation

input program. Here, it returns the program prog2. In Fig. 5,
the newly inserted predecessors to ocppoints (nodes 2 and
5) are nodes 14 and 15. The new program points contain
skip statements whereas the statements at the other points
remain unchanged with respect to the program prog1.

Let newpoints be the new program points inserted by the
first transformation. Let t be a new variable with respect
to prog2. IA is a transformation primitive which takes a
program, a set of program points, a variable, and an ex-
pression and inserts a statement assigning the expression to
the variable at the given points. Here, it inserts t = e at
newpoints. The transformed program prog3 is structurally
same as prog2. In Fig. 5, prog3 will have the statement
t = a+b at nodes 14 and 15.

Finally, all the original computations of the expression e
are replaced by the variable t. RE is a transformation prim-
itive which takes a program, a set of program points, and a
variable and replaces the expressions computed at the given
points by the variable. Here, it takes the program prog3 and
replaces the expressions computed at the antloc points by
the variable t. Fig. 5 shows the optimized program obtained
by simulating OCP Transformation on the program shown
in Fig. 3 for the expression a+b.

4. Defining Temporal Operators and Graph
Transformations

We now present the theories in the TTL library. It defines
temporal operators and a few basic graph transformations.
Unlike our earlier formulations [4], these definitions are op-
erational and written in the executable fragment of the PVS
language. These can therefore be evaluated directly in the
PVS ground evaluator.

4.1. Temporal Operators

A Kripke structure serves as a model for temporal logic.
In our formulation, a Kripke structure is represented by a
directed graph, say G. Its transition relation is represented

as a boolean adjacency matrix T. The atomic propositions
are generalized to predicates over states and their valuations
are lists of boolean values. A value true at a particular lo-
cation in the list corresponds to the predicate being true at
the corresponding state. We define the CTLbp operators in
a boolean matrix algebra (also known as a modal algebra)
and the mu-calculus.

Consider a graph G and a proposition phi. The tempo-
ral formula EX(G,phi) holds at a state if the proposition phi
holds at some successor of the state. Consider the column
matrix corresponding to the proposition phi. The value of
EX(G,phi) is obtained by multiplying the transition relation
G‘T with the column matrix as defined in (1). The boolean
matrix multiplication is denoted by the symbol “#”.

EX(G,phi) = G‘T # phi (1)

This results in a column matrix. For simplicity, we use
lists and column matrices interchangeably. If A and B are
two boolean matrices of suitable dimensions then

[A#B]ji = foldl(or, false, [A]i ∗ [B̂]j)

where for a matrix Z, [Z]ji is (i, j)th element of Z, [Z]i is
ith row, and Ẑ is the transpose of Z.

The temporal formula EY(G,phi) holds at a state if the
proposition phi holds at some predecessor of the state. By
taking transpose of an adjacency matrix we get the graph
with inverted edges. The value of EY(G,phi) is obtained by
multiplying the transpose of the transition relation G‘T with
the column matrix corresponding to phi as defined in (2).

EY(G,phi) = Ĝ‘T # phi (2)

The temporal formula AX(G,phi) holds at a state if the
proposition phi holds at all the successors of the state. Sim-
ilarly, AY(G,phi) holds at a state if phi holds at all the pre-
decessors of the state. It does not hold at the program entry
which has no predecessors. These are defined in (3) where
“−” denotes boolean matrix subtraction.

AX(G,phi) = / (EX(G, /(phi)))
AY(G,phi) = / (EY(G, /(phi)))− G‘entry

(3)

The weak until formula AW(G,phi,psi) holds at a state if
along all forward paths phi holds until psi holds or phi holds
forever. The past (or backward) until formula AS(G,phi,psi)
is similar but interpreted in the backward direction. These
are defined as greatest fixed points as follows:

AW(G,phi,psi) = nu (λ theta. psi + (phi ∗ AX(G,theta)))
AS(G,phi,psi) = nu (λ theta. psi + (phi ∗ AY(G,theta)))

where nu is the greatest fixed point operator and λ is the
lambda operator.

6



4.2. Graph Transformations

We identify a few basic graph transformations viz. node
addition, deletion, splitting, merging and edge addition and
deletion. We now explain the node addition transformation.

Consider a graph G. Let G′ be its transformed version.
Let there be n nodes in G and m nodes in G′. Consider an
(m×n) correspondence matrix C that represents the corre-
spondence relation between the nodes of G′ and G.

Suppose two nodes u and v of G′ correspond respectively
to nodes i and j in G. We want to add a new node w as a
predecessor of j and a successor of i. By a new node, we
mean that there is no node corresponding to it in G. We add
an edge from u to w and an edge from w to v in G′ making
w a predecessor of v and a successor of u. There is no edge
between u and v. The other edges of G′ correspond to the
edges of G. We call this transformation node addition.

The correspondence (relation) C is required to be a par-
tial and onto function, that is every node in G has exactly
one corresponding node in G′ whereas a new node in G′

does not correspond to any node in G. The edges of G′ are
defined in terms of the edges of G as follows:

(C#G‘T#Ĉ − C#E#Ĉ)+ C#Np
︸ ︷︷ ︸

Ei

+ Ns#Ĉ
︸ ︷︷ ︸

Eo

= G′‘T (4)

where E is an (n×n) adjacency matrix where only the edge
from i to j is marked true. Np is an (n×m) matrix which
establishes the correspondence between node i and node w,
i.e., only the element at (i,w) is true. Ns is an (m×n) matrix
which establishes the correspondence between node w and
node j, i.e., only the element at (w, j) is true.

The term (C#G‘T#Ĉ) gives all the edges of G′ corre-
sponding to the edges of G. The term (C#E#Ĉ) gives the
edges corresponding to the edge from i to j. If any such edge
is present, it is removed because a new node is being added
between i and j. The term Ei maps the edge from i to j to an
edge from u to w. The term Eo maps the edge from i to j to
an edge from w to v.

This simple and concise definition of the node addition
transformation is used for defining a variety of control flow
transformations in the OVerification library viz. insertion of
predecessors or successors and edge splitting.

5. Defining Transformation Primitives and
their Soundness Conditions

The OVerification library defines control flow graph
based abstraction of three–address code. It is explained in
section 3.1. We now discuss the definitions of the transfor-
mation primitives and their soundness conditions which are
developed as part of the OVerification library.

1 3

2

E E

C
Ĉ

G
G′

1 3

2

4

Ei
Ei

Eo

Np

Np

Ns

Figure 8. Insert Predecessors

5.1. Transformation Primitives

The transformation primitive IP inserts a new predeces-
sor to each program point in a given set. It is used in the
first transformation of OCP Transformation in Fig. 6. The
control flow graph of the transformed program is defined
using the node addition transformation. Consider the graph
G in Fig. 8. We want to insert a new node 4 as a predecessor
to node 2. The transformed graph is G′. The dashed arrows
from the nodes of G′ to the nodes of G represent the corre-
spondence C. The dashed arrows in the opposite direction
represent the transpose of C.

The incoming edges to node 2 in G form the matrix E.

The term (C#G‘T#Ĉ − C#E#Ĉ) in (4) gives all the
edges of G′ except the incoming edges to nodes 2 and 4.
The matrix multiplication can be seen as composition of the
arrows and the edges. For example, by following the dashed
arrows from right to left, we go from node 1 of G′ to node 1
of G. We then follow the edge 1 to 3 in G. Finally, we fol-
low the dashed arrows from left to right to get from node 3
of G to node 3 of G′. This gives us the edge 1 to 3 in G′.
Similarly, other edges can be traced.

The matrix Np maps the predecessors of node 2 in G
(nodes 1 and 3) to node 4 of G′. By following the dashed
arrows from right to left and then following the Np arrows
from left to right, we get the incoming edges Ei of node 4.
The matrix Ns maps node 4 of G′ to node 2 of G. By tracing
Ns and Ĉ arrows, we get the Eo edge 4 to 2. The newly
inserted node 4 contains a skip statement.

The other transformations used in the specification of
OCP Transformation are IA for “insert assignments” and RE
for “replace expressions by a variable”. They change only
the statements associated with the program points being
transformed. These primitives are defined as updating of
the statement list L of the input program.

5.2. Soundness Conditions

The transformation primitive IP does not introduce new
execution paths in the transformed program. It only ex-
tends the existing paths. The new nodes contain skip state-
ments and hence do not affect the program state. Therefore,

7



Available(prog,e) : list [bool ] = AS(prog‘cfg, Transp(prog,e), Comp(prog,e))

Anticipatable(prog,e) : list [bool ] = AW(prog‘cfg, Transp(prog,e)− phi’exit,Antloc(prog,e))

Dead(prog,v) : list [bool ] = AW(prog‘cfg, /(Use(prog,v)),Def(prog,v))

EqValue(prog,v,e) : list [bool ] = AY(prog‘cfg, AS(prog‘cfg, Transp(prog,e)− Def(prog,v), AssignStmt(prog,v,e)))

SoundIA(prog, points, v, e) : bool = Skips(prog,points) ∧ (points ≤ (Dead(prog,v) + EqValue(prog,e,v))) ∧

(points ≤ (Available(prog,e) + Anticipatable(prog,e)))

Figure 7. Soundness Conditions for the transformation primitive IA

any application of the primitive preserves semantics. The
soundness condition of IP is thus vacuously true.

The soundness condition (SoundIA) of the primitive IA
is given in Fig. 7. An application IA(prog, points, v, e) pre-
serves semantics if (1) The statements at points in the pro-
gram prog are skip statements (Skips). (2) The variable
v is not used in the future unless redefined (Dead) or the
variable v and the expression e have the same value at the
point of insertion (EqValue). This ensures that wherever v
is used, it has the same value in both the input and the trans-
formed programs. (3) The expression e is already computed
in the past (Availability) or will be computed in the future
(Anticipatability). This ensures that the computation of e at
the point does not result in any new value being computed
along any path.

The soundness condition of the primitive RE is defined
as follows: Let p be a point in a set of program points points
and e be the expression computed at p. An application
RE(prog, points, v) at p preserves semantics if the variable
v and the expression e have the same value (EqValue) at p.
This ensures that the variable being assigned to at p gets the
same value in both the input and the transformed programs.

We have separately shown that if soundness conditions
of a primitive are satisfied then the transformation preserves
semantics. A sample proof is available in [4].

6. Evaluating Specifications

We now present the design of an Emacs based
verification condition generation utility (shown as VC Gen-
erator in Fig. 2) and also explain how the specifications are
simulated and validated in PVS.

6.1. VC Generator

Overview of VC Generator. The verification condition
(VC) generator is an interactive Emacs function for gener-
ating verification conditions for optimization specifications.
The code for the VC generator is given in Fig. 9. It is in-
voked by typing M-x vcgen in the PVS Emacs buffer con-
taining the specification to be processed. The function
vcgen consists of the following three steps:

1. It installs the functions required for probing the inter-
nal representation of PVS declarations stored in the
PVS Lisp image by invoking install-pvs-funs function.
It then initializes global variables to be used for pro-
cessing of the internal representation by sending the
command (init-vars) to the PVS Lisp image via the
function pvs-send-and-wait. pvs-send-and-wait is a
function for synchronous inter-process communication
between the Emacs Lisp and the PVS Lisp images.

2. It gets the name of the specification theory via
get-theory-name function which stores the name in
the variable theory-name. It then invokes the function
get-opt-decl which probes the theory declaration using
the PVS Lisp functions installed in the first step, finds
the declaration of the optimizing transformation, and
generates the verification conditions.

3. In the final step, vcgen invokes the function
emit-soundness-obligations which creates a buffer
〈theory-name〉 soundness.pvs, prints the verification
conditions to it, and saves it as a PVS file. This func-
tion is written in the Emacs Lisp using Emacs’ buffer
management routines.

Probing the internal representation of declarations. In
the first step, vcgen installs functions to probe the internal
representation of PVS declarations. We now explain how
these functions work with an example.

(defun vcgen (file-name)
“Generate verification conditions.”

(interactive (list (current-pvs-file))) ;; declares that the
;; function is interactive and accepts the PVS file in
;; the current buffer as the only input parameter

(install-pvs-funs)
(pvs-send-and-wait “(init-vars)”)
(get-theory-name file-name)
(get-opt-decl) · · ·
(emit-soundness-obligations theory-name))

Figure 9. Emacs Lisp code for VC Generator

8



(defun find-trans-decl (decl-list)
“Find the declaration of an optimizing transformation.”

(dolist (decl decl-list trans-decl)
(when (and · · ·

(equal (id (declared-type decl)) program-id))
(setq trans-decl decl)) ;; end of when

) ;; end of dolist – iterates over the declarations
) ;; end of the definition of find-trans-decl

Figure 10. PVS Lisp code for finding the dec-
laration of an optimizing transformation

PVS stores the parse tree of a theory declaration as a
Common Lisp Object System (CLOS) [1] data structure.
The internal representation of a theory declaration can be
explored interactively in the *pvs* buffer. For example,
(typecheck-file “ocp”) returns a list of objects corresponding
to the theories in the specification file ocp.pvs. The descrip-
tion of any object is available via the describe command.

We write functions to probe the type-annotated parse
tree. In Fig. 10, we give the code for finding the declaration
of an optimizing transformation. It takes the list of declara-
tions in the theory as a parameter decl-list. An optimizing
transformation returns a (transformed) program abstraction
and is thus characterized by its return type. The function
iterates over each of the declarations using the dolist con-
struct. It checks (among other things) if the return type of
the current declaration decl is equal to the type of the pro-
gram abstraction Program which is stored in the variable
program-id. It then sets a global variable trans-decl to decl
so that it can be accessed by other functions.

The declaration thus obtained is probed and its textual
representation is reconstructed. When use of a predefined
transformation primitive is encountered, a verification con-
dition is created. The verification condition is an instantia-
tion of the soundness condition of the transformation prim-
itive in the context in which the primitive is used. Fig. 11
shows the verification condition for the second transforma-
tion in OCP Transformation. The definition of SoundIA is
given in Fig. 7. Note that the parameters of SoundIA are
instantiated according to the use of IA in the specification.

6.2. Simulation and Validation

Our specifications are operational and are written mostly
in the executable fragment of the PVS language. How-
ever, they contain a few uninterpreted types viz. variable,
constant , and operator . The specifics of these types are
not of interest for specification and verification and hence
are kept uninterpreted. Some functions are also defined ax-
iomatically. The PVS ground evaluator cannot evaluate un-
interpreted symbols. We therefore use theory interpreta-

OCP Transformation VC2(prog1, e): bool =
IF member(e, Expressions(prog1)) THEN

LET ocppoints = Ocp(prog1, e),
antloc = Antloc(prog1, e),
prog2 = IP(prog1, ocppoints),
newpoints = prog2‘cfg‘ns - prog1‘cfg‘ns,
t = NEWVAR(prog2),

IN SoundIA(prog2,newpoints,t,e)
ELSE true ENDIF

Figure 11. An Example Verification Condition

tions [9] to refine abstract specifications by providing con-
crete ground interpretations for the uninterpreted symbols.

We write example programs for testing optimization
specifications as PVS theories. We use the type string in
place of the uninterpreted types variable , constant , and
operator . This creates instances of the specification the-
ories where the type string is used in place of the uninter-
preted types. Additionally, we have used an uninterpreted
function NEWVAR in Fig. 6. It is defined axiomatically to
return a new variable, i.e., a variable that does not appear in
the input program. This function is now defined concretely
to return a new variable name.

The PVS evaluation environment is an interactive read-
eval-print loop that reads expressions from user, converts
them to Common Lisp expressions, evaluates them, and re-
turns the result. Simulating an optimization specification
on a program, in the ground evaluator, returns the optimized
program. The optimizations are validated by evaluating the
verification conditions on the input program.

7. Related Work

Lerner et. al [6] specify optimizations as conditional
rewrites whose enabling conditions are expressed in a re-
stricted form of temporal logic. Our specification language
is more expressive. Their specifications can be used for
validation only after having proved them sound but not
in a manner of “validation against a trace” in which no
specifications need to be written and proved sound.

Our earlier specifications in [4] are intended for
verification and though equally expressive, are not exe-
cutable. The specifications in this paper are operational and
are executable in PVS. The trade-off between these kinds of
specifications with respect to the ease of provability versus
executability is under investigation.

The translation validation approach of Necula [8] tries
to prove semantic equivalence of the input and the opti-
mized programs using some heuristics. The approach of
Zuck et. al [14] requires a compiler to generate program
annotations to aid the semantic equivalence checking. We

9



have suggested a middle path which does not require heuris-
tics and also simplifies the task of compiler by requiring
it to generate only traces of its executions in terms of the
predefined transformation primitives. Further, our approach
does not involve the difficult to automate semantic equiva-
lence proofs and is therefore completely automatable.

Credible compilers [12] and proof-generating compil-
ers [11] schemes propose how compilers themselves can
generate soundness proofs for each run which are checked
by an external proof checker. These approaches expect a lot
of work on the part of compilers and also require extensive
instrumentation of compilers for this.

The Verifix project [3] proposes use of program check-
ing to ensure correctness of compiler implementations. It
checks whether output produced by compiler meets certain
conditions. They have applied it to check front-end im-
plementations. Glesner [2] has introduced the concept of
program checking with certificates and has applied it for
checking code generation algorithms. A code generator is
required to give the sequence of rewrite rules used by it as
a certificate. An external checker recomputes the solution
using the certificate and compares it with the actual output.

8. Conclusions and Future Work

Our approach of identifying transformation primitives
and their soundness conditions simplifies optimization vali-
dation. The simplification comes because validating an op-
timization requires checking the soundness conditions of
the underlying transformation primitives and not seman-
tic equivalence of the input and the optimized programs.
This approach requires a trusted framework for simulating
and validating specifications. We have developed such a
framework using only the PVS ground evaluator. We have
specified and validated several optimizations in it.

We have developed a utility for automatically generat-
ing verification conditions from specifications. These are
checked on test programs to determine whether the trans-
formations preserve semantics. The design of this utility
suggests that it is possible to build application specific util-
ities on top of PVS. Our experience of using PVS also
suggests that PVS can be used effectively for simulating
specifications with judicious choice of language constructs
and using techniques like theory interpretation.

We would like to extend this framework to automatically
generate optimization specific lemmas. These can be used
as intermediate steps in proofs and can also be checked as
part of validation to provide meaningful diagnosis if the val-
idation fails. We would also like to develop a graphical in-
terface to render programs. It is possible to generate Com-
mon Lisp code for PVS specifications. We would like to in-
vestigate how certified optimizers synthesized from sound
specifications can be used in real compilers.

References

[1] L. G. Demichiel. Overview: The Common Lisp Object Sys-
tem. Lisp and Symbolic Computation, 1(2):227–244, 1988.

[2] S. Glesner. Using program checking to ensure the correct-
ness of compiler implementations. Journal of Universal
Computer Science, 9(3):191–222, 2003.

[3] W. Goerigk, A. Dold, T. Gaul, G. Goos, A. Heberle, F. von
Henke, U. Hoffmann, H. Langmaack, H. Pfeifer, H. Ruess,
and W. Zimmermann. Compiler correctness and implemen-
tation verification: The Verifix approach. In poster session
of CC’96. Technical Report LiTH-IDA-R-96-12, Linkping,
Sweden, 1996.

[4] A. Kanade, A. Sanyal, and U. Khedker. Structuring optimiz-
ing transformations and proving them sound. In Proceedings
of COCV’06, pages 105–121, 2006.

[5] O. Kupferman and A. Pnueli. Once and for all. In Proceed-
ings of LICS’95, pages 25–35, 1995.

[6] S. Lerner, T. Millstein, and C. Chambers. Automatically
proving the correctness of compiler optimizations. In Pro-
ceedings of PLDI’03, pages 220–231, 2003.

[7] C. Muñoz. Rapid prototyping in PVS. Technical Report
NIA 2003-03, NASA/CR-2003-212418, NIA-NASA Lang-
ley, National Institute of Aerospace, VA, May 2003.

[8] G. Necula. Translation validation for an optimizing com-
piler. In Proceedings of PLDI’00, pages 83–94, 2000.

[9] S. Owre and N. Shankar. Theory interpretations in PVS.
Technical Report SRI-CSL-01-01, CSL, SRI International,
Menlo Park, CA, April 2001.

[10] S. Owre, N. Shankar, J. M. Rushby, and D. W. J. Stringer-
Calvert. PVS System Guide. CSL, SRI International, Menlo
Park, CA, Sept. 1999.

[11] A. Poetzsch-Heffter and M. Gawkowski. Towards proof
generating compilers. In Proceedings of COCV’04, volume
132(1) of ENTCS, pages 37–51, 2005.

[12] M. Rinard and D. Marinov. Credible compilation with point-
ers. In Proceedings of the FLoC Workshop on Run-Time Re-
sult Verification, July 1999.

[13] B. Steffen. Generating data flow analysis algorithms from
modal specifications. Science of Computer Programming,
21:115–139, 1993.

[14] L. Zuck, A. Pnueli, Y. Fang, and B. Goldberg. VOC: A trans-
lation validator for optimizing compilers. In Proceedings of
COCV’02, volume 65(2) of ENTCS, 2002.

10


