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SUMMARY

The translation validation approach involves establishing semantics preservation of
individual compilations. In this paper, we present a novel framework for translation
validation of optimizers. We identify a comprehensive set of primitive program
transformations that are commonly used in many optimizations. For each primitive,
we define soundness conditions which guarantee that the transformation is semantics
preserving. This framework of transformations and soundness conditions is independent
of any particular compiler implementation and is formalized in PVS.

An optimizer is instrumented to generate the trace of an optimization run in
terms of the predefined transformation primitives. The validation succeeds if (1) the
trace conforms to the optimization and (2) the soundness conditions of the individual
transformations in the trace are satisfied. The first step eliminates the need to trust the
instrumentation. The soundness conditions are defined in a temporal logic and therefore
the second step involves model checking. Thus the scheme is completely automatable.

We have applied this approach to several intraprocedural optimizations of RTL
intermediate code in GCC v4.1.0, namely, loop invariant code motion, partial redundancy
elimination, lazy code motion, code hoisting, and copy and constant propagation for
sample programs written in a subset of the C language. The validation does not require
information about program analyses performed by GCC. Therefore even though the
GCC code base is quite large and complex, instrumentation could be achieved easily.
The framework requires an estimated 21 lines of instrumentation code and 140 lines of
PVS specifications for every 1000 lines of the GCC code considered for validation.
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1. Introduction

A compiler optimizer analyzes and transforms programs to improve their run-time behavior.
This allows programmers to focus on functionality of programs without having to bother
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about efficiency of the generated code. Optimizers have therefore become an integral part of
modern compilers. However, a mistake in the design or the implementation of an optimizer
can proliferate in the form of bugs in the softwares compiled through it.

The issue of soundness of optimizers is usually addressed at two levels: (1) One time
guarantees are obtained at the design level by verifying optimization specifications and (2) run-
time guarantees are obtained at the implementation level by validating optimization runs.

Both these approaches involve proofs of semantic equivalence between the input and the
optimized programs. However, they are usually tedious. Even in the case of validation where
semantic equivalence is to be shown for a particular execution, it cannot be accomplished with
ease. This complexity can be conquered by taking advantage of the fact that optimizations
with similar objectives employ similar program transformations. For example, “replacement
of some occurrences of an expression by a variable” is a transformation which is common to
optimizations like common subexpression elimination, lazy code motion, loop invariant code
motion, and several others whose aim is to avoid unnecessary recomputations of a value.

This observation led to identification of transformation primitives and soundness conditions,
and their use in verification of optimization specifications [15, 14, 13]. A transformation
primitive denotes a small-step program transformation that is used in many optimizing
transformations. These primitives can thus be used to specify a large class of optimizations by
sequential composition. The soundness condition for a transformation primitive is a condition
on programs input to the primitive which if satisfied implies that the transformed program
is semantically equivalent to the input program. The soundness conditions essentially capture
the context dependent patterns in proofs of semantics preservation for the transformations.
Proving sufficiency of soundness conditions for semantics preservation under the respective
transformations is a one time affair and is independent of any optimization. Since the
primitives are small-step transformations, these proofs are much easier than similar proofs
for optimizations. This approach reduces proving soundness of an optimization to merely
showing that soundness conditions of the underlying primitives are satisfied on the versions
of the input program on which they are applied. This is much simpler than directly proving
semantics preservation for each optimization.

In our opinion, this compositional view simplifies the design, implementation, and soundness
proofs at both specification (verification) and implementation (validation) levels. In fact, the
GCC (v4.1.0) implementation is a witness to the merit of this view. GCC optimizes a program
by applying a sequence of smaller transformation routines to it. Using the consistency in our
view and the GCC implementation, we have developed a novel validation scheme for GCC
optimizers. We instrument GCC to generate traces that describe optimizations as sequences
of predefined transformations primitives. We then validate an optimization by checking
(1) whether the generated trace conforms to the optimization performed and (2) whether
the soundness conditions of the individual transformations in the trace are satisfied. The first
step eliminates the need to trust the instrumentation and the second step avoids the need to
derive a proof of semantic equivalence between unoptimized and optimized programs.

Given the size and complexity of the GCC code, the task of instrumenting GCC optimizers
appears to be daunting. Typically, program analyses and in particular, profitability heuristics,
are the most complex and largest parts of optimizer implementations whereas optimizing
transformations constitute only a fraction of the actual code. Since semantics preservation of
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a transformation is established by checking its soundness condition, our approach does not
require any information about program analyses. Consequently, the task of instrumenting
the compiler involves examining and instrumenting only the optimizing transformation
routines and is therefore easy. For instance, various global common subexpression elimination
algorithms are implemented in the GCC source file gcse.c. It consists of around 6800 lines of C
code whereas the optimizing transformation routines hoist code, pre gcse, and cprop consist
of only 150, 50, and 15 lines of code respectively. The rest of the code is concerned with data
structure implementations, analysis, and book–keeping operations. Our approach is therefore
more practical and lightweight than approaches which require an instrumentation of a compiler
to generate annotations for the target code [29] or to generate proofs of correctness [24].

The framework of transformation primitives and their soundness conditions is developed in
PVS [23] and is independent of any particular optimizer implementation. A trace generated
by an instrumented GCC optimizer is converted into a PVS theory and interpreted using the
conceptual framework of transformation primitives and soundness conditions. The soundness
conditions are expressed in a temporal logic, called Computational Tree Logic with branching
past (CTLbp) [16]. The PVS ground evaluator is used for evaluating program transformations
and model checking the soundness conditions.

In this paper, we highlight the practical issues encountered while developing the validation
framework for GCC and the approaches we used to address them. The present implementation
is aimed at estimating the cost of instrumenting a real compiler like GCC and usability
of the framework in terms of coverage of various optimizer implementations using only a
small set of transformation primitives. The input programs to the compiler are restricted to
a small subset of the C language. Scaling up to realistic input programs would require a
more comprehensive treatment of the RTL intermediate representation of GCC and a more
efficient implementation of the model checking algorithm. Addressing scalability is a future
work. Note that the soundness conditions are expressed in CTLbp and the complexity of model
checking CTLbp formulae is linear in both the size of the model (program) and the length of
the formula [16]. The soundness conditions are specific CTLbp formulae and are small.

The estimate of the cost and usability of the framework is encouraging. The estimated
GCC code base that is covered by the validation efforts is around 11900 lines of the source
code (including comments). The validation framework requires an estimated 21 lines of
instrumentation code and 140 lines of PVS specifications for every 1000 lines of the relevant
GCC code base. These specifications also involve some generic background theories (boolean
matrix operations) that are not supported by the PVS prelude. Counting instead only the
specifications specific to our framework (transformation primitives and soundness conditions),
the framework requires around 100 lines of specifications per 1000 lines of GCC code. The PVS
specifications are independent of the GCC implementation and can therefore be used with other
compiler infrastructures as well, thus mitigating the development cost further. The number of
transformation primitives required is also small. The traces generated by 4 optimizer routines
are considered. These are expressible as compositions of only 7 transformation primitives.

Contributions. The main contributions of this work are as follows:

1. We present a simple and practical framework for validation of several intraprocedural
optimizers implemented in GCC.

Copyright c© 2008 John Wiley & Sons, Ltd. Softw. Pract. Exper. 2008; 00:1–30
Prepared using speauth.cls



4 KANADE, SANYAL, KHEDKER

2. We have validated optimizations of test programs written in a subset of the C language
for all optimization levels of GCC, namely, O1, O2, O3, and Os. In particular, we have
validated the following bit-vector analysis based optimization routines:

• loop invariant code motion (loop.c/move movables),
• partial redundancy elimination (PRE) or global common subexpression elimination

(GCSE) through lazy code motion (gcse.c/pre gcse),
• PRE/GCSE through code hoisting (gcse.c/hoist code), and
• copy and constant propagation (gcse.c/cprop).

3. While experimenting with this framework we have also gained some interesting insights
into the functioning of GCC without having to read through the complex code. In fact,
we observe that GCC performs some optimizing transformations in a roundabout manner
requiring 2–3 steps whereas it can be done in a simpler single step.

Organization. In Section 2, we explain our approach with an example of redundancy
elimination performed by GCC. In Section 3, we give an overview of the validation scheme
and explain the design of the validation framework for GCC. In Section 4, we define primitive
program transformations and characterize semantics preservation in the form of soundness
conditions. In Section 5, we explain conversion of RTL intermediate representation to a
representation suitable for validation. We also discuss the identification and instrumentation
of optimizing transformation routines in the GCC code.

The generated traces are not always in a form that can be validated directly. In Section 6,
we discuss some heuristics to generate equivalent traces that can be validated. As we check
for conformance of a trace with actual optimization, our scheme is sound even when heuristics
are used. To perform validation in the PVS based framework, we convert the traces to PVS
theories. In Section 7, we evaluate the cost of development of the framework in terms of the
code and specification sizes, discuss the complexity of the validation approach, and present
some performance measurements in terms of coverage of the optimizer routines and run-time.
In Section 8, we survey related approaches and in Section 9, we summarize the work.

2. An example GCC optimization and its validation

Consider the following C code:

if (j <= 0) p = a/b; else q = a/b;

if (m <= i) q = a/b;

return (p+q);

Figure 1(a) shows a representation of the RTL intermediate code generated by GCC for
the program. The numbers before ‘:’ are statement numbers. The prefix “@” is used to
distinguish temporary variables generated by the compiler from numbers and variables in
the input program. ‘?’ is a comparison operator and result is a special variable containing the
return value of a procedure. Figure 1(b) shows the control flow graph (CFG) of the program.
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18: @17 = j ? 0

19: if (@17 > 0) then goto 29

23: p = a / b

24: goto 33

29: q = a / b

33: @17 = m ? i

34: if (@17 > 0) then goto 41

38: q = a / b

41: @66 = p + q

48: result = @66

54: return result

18

19

23

24
29

33

34

38

41

48

54

18: @17 = j ? 0

19: if (@17 > 0) then goto 60

61: @67 = a / b

23: p = @67

24: goto 33

60: @67 = a / b

29: q = @67

33: @17 = m ? i

34: if (@17 > 0) then goto 41

59: q = @67

41: @66 = p + q

48: result = @66

54: return result

(a) Input program (b)CFG of i/p program (c)Optimized program

Figure 1. Redundancy elimination performed by GCC v4.1.0

Figure 1(c) shows the program generated by GCC after performing redundancy elimination
on the input program (a).

The computation of a/b at program point 38 is redundant since it is computed along all
incoming paths i.e. at program points 23 and 29 and its operands (variables a and b) are
not assigned in between. This is an example of availability analysis which is used in common
subexpression elimination optimization [3].

Conformance of trace. Figure 2 shows the trace of the program transformations applied
by GCC while optimizing the program in Figure 1(a) to the program in Figure 1(c). Starting
with the input program, each transformation in the sequence transforms the current version
of the input program into a new program to which the next transformation is applied.

Transformation T1 is applied to the input program. It inserts a new predecessor program
point 61 to program point 23. IP is the transformation primitive for insertion of predecessors to
a given set of program points. Program point 61 contains SKIP statement. Next, transformation
T2 replaces the SKIP statement at program point 61 by assignment @67 = a/b. IA is the
transformation primitive for insertion of assignment statements at a given set of program
points. Transformation T3 replaces expression a/b at program point 23 by variable @67. RE

is the transformation primitive for replacement of expression occurrences at a set of program
points by a variable. Transformations T4–T6 are similar to T1–T3.

Transformation T7 inserts a successor program point 59 to program point 38. The statement
at 59 is SKIP. IS is the transformation primitive for insertion of successors to a given set of
program points. Transformation T8 inserts assignment q = @67 at 59. Finally, transformation
T9 deletes program point 38. DS is the transformation primitive for deletion of statements.
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T1 : IP 23 61

T2 : IA 61 ( ASSIGN @67 ( div a b ) )

T3 : RE 23 ( div a b ) @67

T4 : IP 29 60

T5 : IA 60 ( ASSIGN @67 ( div a b ) )

T6 : RE 29 ( div a b ) @67

T7 : IS 38 59

T8 : IA 59 ( ASSIGN q @67 )

T9 : DS 38

Figure 2. Trace of program transformations performed by GCC

The program obtained by simulating the trace on the input program in Figure 1(a) is the
same as the optimized program in Figure 1(c). Thus the trace conforms to the optimization
performed. Note that the trace is generated by the instrumented code whereas the input and
the optimized programs are simply recorded during the compilation.

Note: The example programs and trace used here are modified versions of the exact ones
generated by the instrumented GCC. In Section 6.1, we discuss the heuristics that we use to
convert the exact trace to the one in Figure 2. These heuristics are required because the exact
trace cannot be validated directly. However since a (modified) trace is checked for conformance
with the actual optimization, the heuristics do not compromise the soundness of our scheme.

Soundness of trace. Transformation T1 inserts new predecessor program points which
contain SKIP statements. It does not add or remove any paths in the program. It only extends
the existing paths. Clearly T1 preserves semantics of the input program. T1 is an application
of primitive IP. The soundness condition for IP is true i.e. any application of IP preserves
semantics. The soundness conditions of transformation primitives are discussed in Section 4.3.

Transformation T2 inserts assignment @67 = a/b at program point 61. The statement at 61

is a SKIP statement. Further, @67 is not used anywhere in the program. Hence an assignment
to it does not affect any reaching definitions. Expression a/b is computed at program point 23

which is the only successor to program point 61 (due to T1). Thus the value of a/b at 61 is
same as the value of a/b at 23. Therefore the insertion of a computation of a/b at 61 does not
compute a new value along any path and transformation T2 preserves semantics.

Transformation T3 replaces the computation of a/b at 23 by @67. In the input program to
T3, 61 is the only predecessor of 23 (due to T1). 61 contains assignment @67 = a/b (due to
T2). Clearly @67 has the same value as a/b just before 23. Thus T3 also preserves semantics.
Soundness of transformations T4–T6 can be argued in a similar manner.

Transformation T7 inserts new successor program points which contain SKIP statements.
Similar to T1, it is easy to see that T7 preserves semantics.

Transformation T8 inserts assignment q = @67 at program point 59. In the input program
to T8, 38 is the only predecessor of 59 (due to T7). At 38, q is assigned a/b. Along all backward
paths starting with predecessors of 38, @67 is assigned a/b without any assignment to a, b,
and @67 in between. Thus the value of a/b is same as the value of @67 at 38 and 59. Clearly
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P1 simulator Pk+1

Pk+1 = α(S′)?

S
input

program optimizer

(instrumented)

S′
optimized
program

α abstraction
function

αtrace τ =
T1(π1); . . . , Tk(πk);

Ti(πi)Pi Pi+1

ϕi(Pi, πi) = true?

Figure 3. Validation against trace

the assignment to q at 59 does not modify the original value of q that would reach program
point 41 where q is used. Hence T8 preserves semantics.

Transformation T9 deletes 38. Since the statement at 38 is an assignment statement, the
deletion does not delete any paths in the program. It only deletes program point 38 from the
existing paths. The assignment to q at 38 is dead because q is also assigned to at the successor
of 38 i.e. program point 59 (due to T8). Thus T9 preserves semantics.

Validation of GCC optimization. Since the trace conforms to the optimization performed
by GCC and each of its transformations is semantics preserving, the semantics of the input
program is preserved by the GCC optimization.

3. Overview of the validation scheme

In our validation scheme, an optimizer is instrumented to generate a trace τ of its execution
as a sequence of appropriately instantiated primitives T1, . . . , Tk as shown in Figure 3. The
program points to which these primitives are applied are π1, . . . , πk. P1 is a control flow graph
based abstract representation of the input program S. A transformation Ti(πi) is applied to
(abstract) program Pi and results in program Pi+1. The optimized program S′ is semantically
equivalent to the input program S if the following conditions hold:

(1) The abstract representation of S′ matches the output program Pk+1 obtained by
simulating the trace on the input program P1 i.e. Pk+1 = α(S′).

(2) For each transformation primitive Ti in the trace τ , the soundness condition ϕi of Ti is
satisfied on program Pi i.e. ϕi(Pi, πi) = true.

The first step eliminates the need to trust the instrumentation by checking commutativity
of S, S′, P1, Pk+1 mappings. The second step avoids the need to derive proofs of semantic
equivalence directly and hence is amenable to automation. We call this scheme validation
against trace.
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PVS
ground evaluator

conformance of trace?
soundness of trace?

Spots/Pvs libraries

(transformation primitives,
soundness conditions)

test.c.pvs test.c.dot

spots to pvs spots to dot

test.c.spots

test.c test.s
GCC

front-end
instrumented

optimizer
GCC

back-end

input spots
program

trace optimized spots
program

input

IR

optim.

IR

Figure 4. Spots/Gcc validation framework

Automating this scheme requires a trusted framework for simulating transformation
primitives and checking their soundness conditions. In Section 4, we discuss the design of
a PVS based framework called Spots/Pvs for this. Spots is an acronym for “System for
Proving Optimizing Transformations Sound”. It is used for specification and verification
of optimizations [15, 13]. We have developed novel boolean matrix algebraic formulations
of transformation primitives and their soundness conditions [14]. These can be directly
evaluated in the PVS ground evaluator. This forms the simulator block in Figure 3. The
abstraction function α maps a program (in the intermediate representation of the compiler)
to a Kripke structure whose graph is same as the control flow graph of the program and
the states are labeled according to the valuations of the local data flow properties. In
the Spots/Gcc framework (Figure 4), it is a syntax–directed translation from the RTL
intermediate representation of GCC to the PVS representation. A Kripke structure is then
generated in PVS by evaluating the local data flow properties on the program representation.

Figure 4 shows the schematic of the validation framework for GCC, called Spots/Gcc.
We instrument several optimizers of GCC to generate traces of their executions in terms
of the transformation primitives defined in the Spots/Pvs framework. Spots/Pvs is a
compiler independent framework whereas Spots/Gcc is a validation framework for GCC.
The input and the optimized intermediate programs of GCC are converted to PVS theories
and subsequently validated in PVS using the Spots/Pvs libraries.

We consider optimizations of programs in RTL intermediate representation (IR) [2, 1]. We
first convert an RTL program to a simplified (spots) format. The spots representation of the
input and the optimized programs together with the generated trace (test.c.spots) is then
converted to a PVS theory (test.c.pvs). We also generate verification conditions for the trace.
The verification conditions are checked using the PVS ground evaluator. We also generate dot
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Figure 5. An example of the node addition transformation

representation of all the programs generated by the trace (test.c.dot) and then a PS file
(test.c.ps) for visualizing the actual transformations.

4. The framework of program transformations

A primitive program transformation (or simply a transformation primitive) is defined in terms
of: (1) A transformation of the control flow graph and (2) a function to map the statements
of the input program to the statements of the transformed program.

4.1. Primitive graph transformations

We define the following primitive transformations of (control flow) graphs: node splitting,
node merging, node addition, node deletion, edge addition, edge deletion, and isomorphic
transformation [13]. These transformations are defined using boolean matrix algebra and hence
are succinct and evaluatable. We explain the node addition transformation here.

Node addition transformation. A node addition transformation adds a new node along each
edge in a given set of edges E of a graph G. It splits the edges in E and adds the new nodes
as successors to the source nodes of the edges in E and as predecessors to the target nodes
of the edges in E. The rest of the edges of G are preserved. For example, consider the two
graphs shown in Figure 5. G′ is obtained by adding node 4 along edge 〈3, 2〉 of G. Edge 〈3, 2〉
is split into two edges 〈3, 4〉 and 〈4, 2〉 making node 4 a successor of node 3 and a predecessor
of node 2. The correspondence relation C shown by the dashed gray arrows from right to left
denotes the correspondence between the nodes of the transformed graph and the input graph.
The lightgray solid arrows from right to left marked as NS map the newly added nodes to the
target nodes of the edges in E. The lightgray dotted arrows from left to right marked as NP

map the source nodes of the edges in E to the newly added nodes.
The correspondence between the edges of the two graphs can be traced diagrammatically.

Edge 〈3, 4〉 is obtained by following the C arrow from node 3 of G′ to node 3 of G and then
following the NP arrow from node 3 to node 4 of G′. Edge 〈4, 3〉 is obtained by following the

NS arrow from node 4 of G′ to node 2 of G and then following the Ĉ arrow from node 2 of
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G to node 2 of G′. In order to form edges corresponding to the edges of G, we traverse all
the edges of G except the edges belonging to E. The composition of edges and arrows can be
expressed by boolean matrix multiplication.

Let us denote a graph G by a pair (N,A) where N is the set of nodes and A is the adjacency
matrix representation of the edges of G. In the following definition, matrix multiplication is
denoted by ‘·’, matrix transpose by ‘̂ ’, and matrix addition by ‘+’.

Definition 1 (Node Addition) The transformation of a graph G = (N,A) to a graph
G′ = (N ′, A′) is called a node addition transformation if

1. The correspondence relation C ⊆ N ′×N (denoted as a |N ′|× |N | boolean matrix) is a partial,
onto, and one-to-one relation and

2. There exist a set E of edges of G denoted as a |N |×|N | matrix, a |N |×|N ′| matrix NP , and
a |N ′|×|N | matrix NS such that the following conditions hold:

(a) E ≤ A,
(b) NP is a total and onto relation from the source nodes of E to the new nodes in G′,
(c) NS is a total and onto relation from the new nodes in G′ to the target nodes of E,
(d) E = NP ·NS, and

(e) (C·A·Ĉ − C·E·Ĉ) + C·NP︸ ︷︷ ︸
EI

+ NS ·Ĉ︸ ︷︷ ︸
EO

= A′.

The correspondences NP and NS and the edges in EI and EO are shown in Figure 5. The
relation C is partial since it does not relate the new nodes with any nodes of the input graph.

4.2. Primitive program transformations

We define the following primitive program transformations where the transformations of the
control flow graph are defined in terms of the primitive graph transformations:

1. An insertion of predecessors (IP) transformation inserts a new predecessor program point
each to a given set of program points.

2. An insertion of successors (IS) transformation inserts a new successor program point
each to a given set of program points.

3. An edge splitting (SE) transformation splits a set of edges and inserts a new program
point along them.

The transformation of the control flow graph for IP, IS, and SE primitives is defined as a special
case of the node addition transformation. The statement at the newly inserted program points
is skip. For IP and SE transformations, each jump statement in the input program whose target
is one of the program points in the given set is changed so that the target is the corresponding
newly inserted program point in the transformed program. The statements at other program
points are not changed. We restrict the applications of these primitives in order to preserve
the consistency between the control flow and contents of the program. For example, we do
allow insertion of a successor to a conditional statement.

We now explain the insertion of predecessors transformation with an example. Consider the
two programs shown in Figure 6 such that prog′ = IP(prog, succs, newpoints). The program prog′
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· · ·3 · · ·4

· · ·5

· · ·6

prog′

NP

NP

NS

E
E

EI
EI

EO

Insert program point 7 as the predecessor to program point 2

Figure 6. An example of insertion of predecessors transformation

is obtained by inserting the new program point 7 as the predecessor to program point 2. Let
us use the ordered sequence 〈1, . . . , 6〉 for indexing matrices associated with prog. Let succs =
〈0, 1, 0, 0, 0, 0〉 represent a set containing program point 2. Let newpoints = 〈0, 0, 0, 0, 0, 0, 1〉
denote the set of new program points predecessors to succs. The ordered sequence for indexing
matrices for prog′ is 〈1, . . . , 6, 7〉. The new program point 7 is placed at the end of the list.

We model a transformation of the control flow graph of a program by an application of IP

as a node addition transformation (Definition 1). Given the arguments of IP, we set up the
adjacency matrices for the relations C, NS , and NP . For the transformation in Figure 6:

The relation C is represented as the matrix shown here. The rows
correspond to program points 1, . . . , 7 (of the transformed program)
and the columns correspond to program points 1, . . . , 6 (of the input
program). Since the new program point does not correspond to any
program point in the input graph, the last row has all 0s.

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

0 0 0 0 0 0

The matrix Succs is a (1×6) matrix which is appended to a (6×6) matrix
containing all 0s to get the (7×6) matrix N S which maps program point
7 of prog′ to program point 2 of prog.

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

0 1 0 0 0 0

The relation NP maps program points 1 and 5 (the predecessors of
program point 2 in prog) to program point 7. Given the vector succs, we
identify the adjacency matrix E of the incoming edges to the program
points denoted by succs. The matrix NP is then obtained as E·N̂S .

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

1
0
0
0
1
0

It can be verified that the matrices satisfy the conditions about the nature of the
corresponding relations given in Definition 1. For example, the correspondence matrix C
denotes a partial (at least one row has all 0s), onto (each column has at least one non-zero
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element), and one-to-one relation (each column as well as each row has at most one non-zero
element). The adjacency matrix A′ of the CFG of prog′ can be obtained by substituting these
matrices and the adjacency matrix A of the control flow graph of prog in Definition 1.

An insertion of predecessors transformation inserts SKIP statements at the newly inserted
program points. If the target of a goto or a conditional statement belongs to the set represented
by succs then the target is updated to its new predecessor program point (identified using the
NS relation). For the example shown in Figure 6, the target of the conditional statement at
program point 5 will be updated to program point 7 in the transformed program. All other
statements remain unchanged.

4 A deletion of statements (DS) transformation deletes a set of program points only if they
contain assignment, skip, or goto statements. Program points containing conditional or
return statements cannot be deleted. The transformation of the control flow graph is
defined as a special case of the node deletion transformation.

The following transformation primitives change only program statements. The control flow
of the input program is preserved.

5 An insertion of assignments (IA) transformation inserts a given assignment statement
at a given set of program points.

6 A replacement of expressions (RE) transformation replaces the occurrences of a given
expression at a set of program points by a variable.

7 A replacement of variable operands (RV) transformation replaces the occurrences of a
given variable in the expressions computed at a set of program points by a variable or a
constant.

These transformation primitives are sufficient for expressing a large class of compiler
optimizations, namely, common subexpression elimination, optimal code motion, loop invariant
code motion, lazy code motion, full and partial dead code elimination [13].

4.3. Soundness conditions for semantics preservation

We model semantics preservation of a transformation primitive in terms of a soundness
condition. A soundness condition defines certain global dataflow properties of a program which
guarantee that the program and its transformed version obtained by an application of the
primitive are semantically equivalent. We define soundness conditions using a temporal logic
called computational tree logic with branching past (CTLbp) [16]. In the following discussion,
we do not assume familiarity with CTLbp and explain the notation wherever required.

We first define the notion of semantic equivalence. A store σ denotes the valuations to all
variables in a program. The return value of the program is denoted by a variable result. It can
take a special value ⊥ called the error value. A state is a pair (n, σ) of a program point n and
the associated store σ. A state transition relation ; defines how program statements affect
the program state. Let the entry point of a program prog be entry. A program trace ρ is an
infinite sequence of states s1 ; · · · sn ; · · · where s1 = (entry, σ1) is an initial state with σ1

as an initial store and for all i, si ; s(i+1) according to the statement semantics. A trace ρ
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Dead OUT(v) = AX( AW(/(Use(v)), Def(v)) )

Same Value IN(v, x) =

AY( AS(/(Def(v)) ∗ /(Def(x)), Same Value OUT 1(v, x) + Same Value OUT 1(x, v)) )

EqValue IN(v, e) = AY( AS(Transp(e) ∗ /(Def(v)), AssignStmt(v, e)) )

Available IN(e) = AY( AS(Transp(e), Comp(e)) )

Anticipatable OUT(e) = AX( AW(Transp(e) ∧ ¬exit, Antloc(e)) )

Figure 7. Global program properties as temporal logic formulae

is terminating if there exists i ∈ N such that pi = ⊙. Let end(ρ) be such that pend(ρ) = ⊙
and for all i ∈ N , i < end(ρ) implies that pi 6= ⊙. The program point ⊙ does not contain any
statement and denotes termination i.e. (⊙, σ);(⊙, σ).

Definition 2 (Semantic equivalence) Consider a terminating trace ρ of a program prog1.
A program prog2 is semantically equivalent to prog1 if there exists a (unique) terminating trace
ρ′ of prog2 such that (1) the initial stores are equivalent: σ1�σ

′

1 where σ�σ′ if for every variable
v of prog1, JvKσ = JvKσ′; and (2) JresultKσend(ρ) = JresultKσ′

end(ρ′) or JresultKσend(ρ) = ⊥.

Informally, a program prog2 is semantically equivalent to a program prog1 if starting with
equivalent stores, both programs exit normally with the same value of result (the return
variable) or prog1 aborts, in which case, prog2 may or may not abort. In this definition,
we do not make a distinction between non-terminating (diverging) and erroneous traces. The
sufficiency of the soundness conditions of a transformation primitive can be proved by induction
on the length of a program trace. Here, we shall explain sufficiency of the soundness conditions
only informally. For formal proofs of semantics preservation and boolean matrix algebraic
semantics of CTLbp operators, we refer the reader to [13].

Deletion of statements

Let prog2 be a program obtained by deleting statements at program points in a set P of a
program prog1. The incoming edges of a program point being deleted are joined to its outgoing
edges. To preserve the structure of the CFG, we do not allow deletion of the program entry
and exit points. We also do not allow deletion of ITE and RETURN statements. The deletion of
a SKIP statement trivially preserves semantics. Note that we are considering transformations
of control flow graph representations of programs. For a GOTO statement, the target program
point of the jump is also its successor in the CFG. Since the incoming edges of a program
point are joined with its outgoing edges, the deletion of a GOTO statement trivially preserves
the structure of the control flow and the program semantics. In the following discussion, we
consider semantics preservation for deletion of ASSIGN statements.

Suppose p ∈ P and the statement at p is ASSIGN(v, e). We explain the soundness conditions
of the DS primitive using the following cases:
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1. The expression e is just a variable, say x:
If the variables v and x are same then it is an assignment of v to itself and deletion of p
trivially preserves semantics. Otherwise, the deletion preserves semantics if

(a) The variable v is “dead” at all successors of p i.e. it is not used subsequently unless
redefined. Or

(b) The variable x has the same value as the variable v just before p. We consider the
following two cases:

a = b5

· · ·2

a = b1

· · ·

· · ·4

b = a3

· · ·

a = b7

a = e13

· · ·2

b = e11

· · ·

b = e26

· · ·5

a = e24

· · ·

Case 1 Case 2

Case 1 : Before program point 5, a and b have same value because along all backward
paths starting from predecessors of 5, either b is assigned to a or a is assigned to b
without any other assignments to a and b in between.
Case 2 : Before program point 7, a and b have same value because along all backward
paths starting from predecessors of 7, either (i) a is assigned an expression e1 and
before that b is assigned e1 with no assignment to any operands of e1 or to a or b
in between or (ii) b is assigned an expression e2 and before that a is assigned e2
with no assignment to any operands of e2 or to a or b in between. Additionally,
the expression e1 cannot have the variable b as an operand and the expression e2
cannot have the variable a as an operand.

The conditions (a) and (b) are respectively given as Dead OUT(v) and Same Value IN(v, x)
in Figure 7. The predicates Use(v) and Def(v) respectively check if v is used (i.e. appears
in an expression) and defined (i.e. appears on LHS) at a program point. The temporal
logic operators AX and AW are forall (universal) successor and weak until operators.
AX(ϕ) holds at a program point if ϕ holds at all of its successors. AW(ϕ, ψ) holds at a
program point if along all forward paths ϕ holds until ψ holds or ϕ holds forever. AY

and AS are universal predecessor and since operators. These are counter parts of AX and
AW operators for backward paths (also called past operators).
For brevity, we omit the definition of Same Value OUT 1. In Case 1, Same Value OUT 1(a, b)
holds at {1} and Same Value OUT 1(b, a) holds at {3}. In Case 2, Same Value OUT 1(a, b)
holds at {3} and Same Value OUT 1(b, a) holds at {6}.

2. The expression e is either a constant or a unary or a binary expression.
The deletion preserves semantics if:

(a) The variable v is “dead” at all successors of p. Or
(b) The values of v and e are equal just before p. This is possible if along all

backward paths starting with the predecessors of p, the expression e is transparent
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(i.e. none of operands is defined) and the variable v is not defined until an
assignment ASSIGN(v, e) is encountered. This condition is given as EqValue IN(v, e)
in Figure 7. The predicate Transp(e) checks whether e is transparent and the
predicate AssignStmt(v, e) checks whether the statement is ASSIGN(v, e) at a
program point.

Insertion of assignments

Let prog2 be a program obtained by insertion of assignments ASSIGN(v, e) at program points
from a set P of program points of a program prog1. The control flow graph (CFG) of prog2

is same as that of prog1. The statements of prog2 are same as the statements of prog1 except
for statements at program points in P . Suppose p ∈ P . The insertion of ASSIGN(v, e) at p
preserves semantics if the following conditions are satisfied:

1. The statement at p in prog1 is a SKIP statement and
2. At least one of the following conditions holds:

(a) The variable v is not used subsequently unless redefined i.e. Dead OUT(v). Or
(b) v and e have same value just before p. This ensures that wherever v is used, it

has same value in the input and the transformed programs. If e is just a variable,
say x, then Same Value IN(v, x) should be satisfied at p. Otherwise EqValue IN(v, e)
should be satisfied at p. These properties are explained respectively in conditions
1.b and 2.b for deletion of statements primitive

and
3. If e is either a unary or a binary expression, its computation at p in prog2 should not

result in computation of a new value along any path. Thus, the expression e should be
either “available” or “anticipatable” at p. An expression is available at a program point
if it is computed along all backward paths starting from the program point and none
of its operands is defined in between and at the point of computation. An expression is
anticipatable at a program point if it is computed along all forward paths starting from
the program point and none of its operands is defined in between. These conditions are
respectively defined as Available IN(e) and Anticipatable OUT(e) in Figure 7.
The predicate Comp(e) is satisfied at a program point if the expression e is computed
at the program point and none of its operands is assigned. The predicate exit checks if
a program point is the program exit. The predicate Antloc(e) is satisfied at a program
point if the expression e is computed at the program.

Replacement of expressions

Let prog2 be a program obtained by replacement of an expression e by a variable v at program
points from a set P of program points of a program prog1. The CFG of prog2 is same as that
of prog1. The statements of prog2 are same as the statements of prog1 except for statements at
program points in P . Suppose p ∈ P . The replacement of e by v at program point p preserves
semantics if the following conditions are satisfied:
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1. The statement at p is an ASSIGN statement with its right–hand side expression as e.
2. The variable v is not an operand of the expression e.
3. v and e should have the same value just before p. If e is just a variable then

Same Value IN(v, e) should be satisfied at p. Otherwise EqValue IN(v, e) should be
satisfied at p.

5. Generation of traces for GCC optimizations

The GNU Compiler Collection (GCC) [2] is a widely used and a mature compiler infrastructure.
A front–end for GCC is typically generated from a Lex/Yacc specification of the lexical and
the syntactic structure of a language. A back–end is generated from a machine description file.
However, the optimizers operating on intermediate code are hand–coded. Therefore schemes
for validating soundness of GCC optimizers are highly desirable.

GCC uses several intermediate representations, namely, GENERIC abstract–syntax tree,
GIMPLE three–address code, static single assignment (SSA), and Register Transfer Language
(RTL) [1]. In our validation scheme, we address optimizations of RTL code for programs
written in a subset of the C language.

5.1. Processing RTL code

We now explain the RTL representation and the processing required to extract the information
relevant for validation. RTL code is organized as an instruction chain (insn-chain). It is a
doubly linked list of RTL expressions. The following types of RTL expressions (rtx’s) are used
for representing instructions:

(1) insn is a sequential instruction that cannot jump i.e. cannot pass the control to an
instruction other than its successor in the chain.

(2) jump insn is an instruction that can possibly jump.
(3) call insn is an instruction that calls a subroutine.
(4) barrier is a marker that indicates that control cannot flow through.
(5) code label holds a label (string) which is used as a target for jumps.
(6) note contains miscellaneous metadata.

The above rtx’s are typically referred to as insns. An insn in the insn-chain contains a
unique identifier (a number), the identifier of the preceding insn, the identifier of the succeeding
insn, and an optional instruction rtx. An instruction rtx is an instruction from the program.
In the assembly code generation phase, an instruction rtx is pattern matched with target
machine dependent rtx code. The definitions of all types of RTL expressions are given in
${GCCHOME}/gcc/rtl.def file where ${GCCHOME} is the base directory of the source code.

Control flow. The control flow of a program is embedded in the insn-chain. The instruction
rtx contained in an insn cannot be a jump instruction. Hence, the control flows from the
insn to its successor insn. The code label, note, and barrier insns do not contain instruction
rtx’s. We therefore do not represent them in the Spots representation. A jump insn contains a
conditional or an unconditional goto instruction rtx. A goto instruction rtx contains a reference
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(insn 18 13 19 0 (set (reg:CCNO 17 flags)

(compare:CCNO (reg/v:SI 60 [ j ])

(const_int 0 [0x0]))) 0 {*cmpsi_ccno_1} (nil) (nil))

(jump_insn 19 18 21 1

(set (pc) (if_then_else (gt ...) (label_ref 26) (pc))) ...)

(note 21 19 23 1 [bb 1] NOTE_INSN_BASIC_BLOCK)

(insn 23 21 24 1 (set (reg/v:SF 64 [p])

(div:SF (reg/v:SF 62 [a]) (reg/v:SF 63 [b]))) .. (nil) (nil))

(jump_insn 24 23 25 1 (set (pc) (label_ref 30)) .. (nil) (nil))

(barrier 25 24 26)

(code_label 26 25 27 2 2 "" [1 uses])

(note 27 26 29 2 [bb 2] NOTE_INSN_BASIC_BLOCK)

(insn 29 27 30 2 ...)

(code_label 30 29 31 3 4 "" [1 uses])

(note 31 30 33 3 [bb 3] NOTE_INSN_BASIC_BLOCK)

(insn 33 31 34 3 ...)

Figure 8. An RTL code fragment

to the code label insn to which the control is to be passed. Since we do not represent code label

insns in the Spots representation, we take the closure of the control flow from a code label

insn to next insn or jump insn. As we consider only intraprocedural analyses and optimizations,
we do not allow function calls (and hence call insns) in programs.

Figure 8 shows an RTL code fragment for the C program given in Section 2. The insns
correspond to the if–else statement in the code. In (insn 18 13 19 ...), the identifier of the insn
is 18. For an insn p, the identifier is obtained as INSN UID(p) in the GCC source. Insn 13 (not
given here) is the preceding insn in the insn-chain whereas insn 19 is the succeeding insn in
the insn-chain. They can be respectively obtained by PREV INSN(p) and NEXT INSN(p) in
the GCC source. Figure 9(a) shows the doubly linked insn-chain.

Figure 9(b) shows the control flow of the RTL code fragment. A node p denotes an insn
p and an (solid) edge denotes the flow of control between insns. Since insn 18 is an insn rtx,
the flow of control falls through to its successor insn 19. This is indicated in Figure 9(b) by
edge 〈18, 19〉. Insn 19 is a jump insn and the instruction rtx if then else is a conditional goto

. . 18 19 21 23 24 25 26 27 29 30 31 33 . .

(a) RTL instruction chain

. . 18 19 21 23 24 25 26 27 29 30 31 33 . .

(b) Control flow

Figure 9. Control flow of the RTL code fragment
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18 ( ASSIGN @17 ( compare j 0 ) )

19 ( ITE ( gt @17 0 ) ( GOTO 29) )

23 ( ASSIGN p ( div a b ) )

24 ( GOTO 33 )

29 ( ASSIGN q ( div a b ) )

33 ( ASSIGN @17 ( compare m 0 ) )

Figure 10. Contents of the RTL code fragment

statement. The target of goto is given as (label ref 26) rtx indicating that if the condition in
the instruction rtx is true then the control goes to insn 26. However, insn 26 is a code label

insn. Hence, we take closure of the flow of control until we reach an insn or a jump insn. Insn
27 is a note insn but insn 29 is an insn rtx. Thus, we have edge 〈19, 29〉. If the condition of the
goto in insn 19 evaluates to false then it follows edge 〈19, 23〉, insn 21 being a note insn. Since
insn 24 is an unconditional goto, the control cannot fall through to a succeeding insn in the
insn chain. This is indicated by the barrier insn 25.
Contents. Program statements are embedded in insns as instruction rtx’s. We eliminate
machine specific details and retain only the part that corresponds to the input program. For
instance, consider insn 18 in Figure 8. The instruction rtx is a set statement which assigns
an expression (compare j 0) to a temporary variable (or register) denoted by number 17. The
corresponding instruction is given in Figure 10 where ASSIGN denotes an assignment statement
and @17 denotes a temporary variable 17. The prefix “@” is used to distinguish temporary
variables generated by GCC from numbers in the input program. The statement at insn 19 is
an if-then-else statement which is denoted by ITE. The representation for rest of the statements
in Figure 8 is also given in Figure 10.

Printing. GCC uses print rtl function for printing a list of rtls given the head node of the list
(get insns()). To generate the Spots representation, we have written a function print spots rtl

which is adapted from print rtl function.

5.2. Generating optimization traces

Given the size and complexity of the GCC code, the task of instrumenting GCC optimizers
appears to daunting. Our approach relies only on traces of optimizing transformations and
not on any information about program analyses used by optimizers. We therefore do not have
to understand data structures used for computing and storing analysis information and book-
keeping operations. This simplifies the task of instrumentation. We can also ignore the fact
that GCC uses basic-block level representation whereas our scheme works at the insn level.

Further, program analyses and in particular, profitability heuristics, are the most complex
and largest parts of optimizer implementations. On the contrary, optimizing transformation
routines are simpler and smaller in size. Figure 11 shows lines of code (LOC) for some optimizer
implementations and optimizing transformation routines defined in them. For trace generation,
we need to study optimizing transformation routines and other primitive transformation
routines used by them. As can be seen from Figure 11, this constitutes only a fraction of
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File ≈ LOC (incl. comments)

Entire gcse.c file 6800
Transformation gcse.c/hoist code 150
Transformation gcse.c/pre gcse 50
Transformation gcse.c/cprop 15

Entire loop.c file 11900
Transformation loop.c/move movables 500

Figure 11. Approximate code sizes of GCC v4.1.0 optimizer implementations

the actual code. Our approach is therefore more practical and lightweight than approaches
which require an instrumentation of a compiler to generate annotations for target code [29] or
to generate proofs of correctness [24].

An optimizing transformation routine is instrumented as follows:

(1) The Spots representation for the input program to the routine is emitted as explained
in Section 5.1.

(2) Flags are set for trace generation. This signals corresponding primitive transformation
routines to generate a trace of their execution if invoked.

(3) The actual transformation routine is executed. The primitive transformation routines
called by the code generate traces of their execution.

(4) Trace generation flags are reset to disable trace generation.
(5) The Spots representation for the optimized program is generated.

An optimizing transformation routine may follow different execution paths for different
input programs, possibly calling different primitive transformation routines with different
parameters. However, since the body of a primitive transformation routine is instrumented, we
do not have to instrument their call sites. Thus, irrespective of the calling context, a primitive
always generates a correct trace of its invocation. Further, the instrumentation being merely
print statements, is safe and side-effect free.

Figure 12 shows the correspondence of a primitive transformation routine in cfgrtl.c and
a Spots/Pvs primitive. The transformation routine delete insn corresponds to the primitive
DS. The function delete insn takes as an argument an insn to be deleted. We emit the identifier
for the insn by using INSN UID function. Figure 12 also shows the correspondence between

File cfgrtl.c
Function rtx delete insn (rtx insn)
Spots primitive DS INSN UID(insn)

File emit rtl.c
Function static rtx emit insn after 1 (rtx first, rtx after)

Spots primitives IS INSN UID(after) INSN UID(first)
IA INSN UID(first) print spots rtx(PATTERN(first))

Figure 12. Examples of primitive transformation routines and corresponding Spots primitives
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18: @17 = j ? 0

19: if (@17 > 0) then goto 29

23: @67 = a / b

61: p = @67

24: goto 33

29: @67 = a / b

60: q = @67

33: @17 = m ? i

34: if (@17 > 0) then goto 41

59: q = @67

41: @66 = p + q

48: result = @66

54: return result

IS 38 59

IA 59 ( ASSIGN q @67 )

DS 38




I1

R LHS 29 @67

IS 29 60

IA 60 ( ASSIGN q @67 )




I2

R LHS 23 @67

IS 23 61

IA 61 ( ASSIGN p @67 )




I3

IP 23 61

IA 61 ( ASSIGN @67 ( div a b ) )

RE 23 ( div a b ) @67




I
′

3

IP 29 60

IA 60 ( ASSIGN @67 ( div a b ) )

RE 29 ( div a b ) @67




I
′

2

IS 38 59

IA 59 ( ASSIGN q @67 )

DS38




I
′

1

(a) Optimized program (b) Generated trace (c) Equivalent trace

Figure 13. Optimized program and traces under redundancy elimination of GCC

a primitive transformation routine in file emit rtl.c and a sequence of Spots primitives. The
transformation routine emit insn after 1 inserts first as the successor of after in the CFG. The
equivalent Spots primitive sequence consists of an application of IS followed by an insertion
of the instruction rtx PATTERN(insn). The textual representation of the instruction rtx is
emitted by calling print spots rtx function which is defined in the file print-spots-rtl.c.

We have commented the tree loop optimization pass in passes.c to enable us to exercise more
(RTL) optimizations which otherwise may be performed in the tree optimization phase.

6. Validation of GCC optimizations

6.1. Generating equivalent traces

The primitives appearing in some traces may not satisfy their soundness conditions even if
the input and the optimized programs are semantically equivalent. We therefore apply some
heuristics to convert a trace to an equivalent one such that the new trace satisfies the soundness
conditions of the primitives used in it. Since we check conformance of a trace with actual
optimization (commutativity in Figure 3), our scheme is sound though potentially incomplete.

Consider the input program and its CFG shown in Figure 1: (a) and (b). As mentioned in
Section 2, the optimized program and the trace in Figure 2 are modified versions since the exact
trace does not satisfy the soundness conditions of the transformation primitives. Figure 13(a)
shows the actual optimized program. Figure 13(b) shows the generated trace. The second
transformation inserts q = @67 and modifies the reaching definition of q at program point
41. Consequently, it does not satisfy the soundness condition of IA. Therefore, the validation
fails. However, it can be observed that the input and the optimized programs are semantically
equivalent even though the intermediate steps are not semantics preserving.
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We identify the following issues that prohibit a successful validation:

(I1) The ordering of the transformations is not appropriate for satisfaction of soundness
conditions. For instance, the second transformation IA 59 ( ASSIGN q @67 ) cannot be
proven sound unless the variables q and @67 have same value just before insn 59.

(I2) We do not have any Spots transformation primitive corresponding to the transformation
R LHS 29 @67. The transformation replaces the LHS (variable q) of the assignment at
insn 29 by variable @67. This is an ad hoc transformation whose soundness cannot be
checked independently. It preserves semantics if any of the following conditions holds:

(a) The subsequent uses of q are dominated by insn 29 and are also replaced by @67.
(b) An assignment q = @67 is inserted immediately after insn 29.

To address I2, we may have to defer the checking of soundness conditions to later
transformations in a trace. However, this does not fit well with our compositional validation
scheme where a transformation is validated independently from other transformations in the
trace. We instead design some heuristics to convert a trace to an equivalent trace for which
validation may succeed. Figure 13(c) shows an equivalent trace (same as Figure 2) that satisfies
the soundness conditions of the transformation primitives used in it.

Consider the subsequences I1, I2, and I3 of the original trace as shown in Figure 13(b). Let
I ′1, I

′

2, and I ′3 be transformation sequences equivalent to I1, I2, and I3 respectively with I ′1 = I1.
We apply the following two heuristic translations to convert the original trace 〈I1, I2, I3〉 to a
new trace 〈I ′3, I

′

2, I
′

1〉 shown in Figure 13(c):

(H1) The application points of the first transformations of the sequences I1, I2, and I3 are
insns 38, 29, and 23. We apply a heuristic that statement insertions should be applied to
insns in the direction of the control flow. Therefore, we have two alternatives 〈I ′3, I

′

2, I
′

1〉
and 〈I ′2, I

′

3, I
′

1〉 of which we choose the first sequence.
(H2) We translate a transformation sequence which pattern matches with sequence I given

below to sequence I ′.

R LHS i x

IS i j

IA j ( ASSIGN LHS(i) x )




 I I ′






IP i j

IA j ( ASSIGN x RHS(i) )
RE i RHS(i) x

where LHS(i) denotes the LHS of insn i and RHS(i) denotes the RHS of insn i. Note that
LHS(i) and RHS(i) refer to the values of insn i in the input program to the trace and not
to a version of the input program to which the primitive transformation is applied. We
translate I2 to I ′2 and I3 to I ′3 using this heuristic.

We now explain heuristic H2 with an example. Consider an input program (a) in Figure 14.
Program (b) is obtained by transforming (a) by sequence I and program (c) is obtained by
transforming (a) by sequence I ′. In the Spots/Pvs framework, we represent a CFG by an
adjacency matrix and we do not represent program points (i.e. insn identifiers) explicitly.
Clearly, the adjacency matrices of the CFGs and the statement lists of programs (b) and (c)
are equal. Thus, sequences I and I ′ are equivalent with regards to the transformations they
perform. For more details on other heuristics, we refer the reader to [13].
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Index CFG Statements

(a) 〈m, i, n〉 m i n 〈−, (ASSIGN z e),−〉

(b) 〈m, i, j, n〉 m i j n 〈−, (ASSIGN x e), (ASSIGN z x),−〉

(c) 〈m, j, i, n〉 m j i n 〈−, (ASSIGN x e), (ASSIGN z x),−〉

Figure 14. Equivalence of traces

The conversion of generated traces i.e. RTL code for input and optimized programs and the
sequence of transformation primitives (ref. Figure 4: “spots to pvs” block) to PVS theories is
implemented as AWK and shell scripts.

Suggestions for potential improvements in the GCC code. The generated traces,
apart from their use in validation, also give us interesting insights into the functioning and
organization of GCC optimizations. In our view, the trace in Figure 13(c) is conceptually more
clear than the original trace in Figure 13(b). This suggests a potential reorganization of the
GCC code for better understanding and ease of validation. Further, we observe that sequence
I1 in Figure 13(b) transforms a program in a roundabout way. Instead of performing the three
transformations, we suggest the following single transformation: RE 38 ( div a b ) @67 where
RE is the primitive for replacement of expressions by a variable. Sequence I1 and the above
transformation both transform statement q = a/b to q = @67 except that I1 does it indirectly.
It is also expensive as it involves unnecessary control flow transformations IS and DS. We have
also encountered a few other transformation sequences where two or three transformations can
be replaced by a single equivalent transformation [13]. These observations suggest scope for
potential improvement in the GCC implementation itself.

6.2. Checking conformance of traces

We convert the Spots representation of the input and the optimized programs and a trace to
a PVS theory. A PVS theory generated from a trace uses transformation primitives defined in
the Spots/Pvs libraries. The definitions in these libraries are operational and mostly written
in an executable fragment of the PVS language. However, they contain a few uninterpreted
types, namely, variable, constant, and operator. The specifics of these types are not of interest
for specification and verification and hence are kept uninterpreted in Spots/Pvs.

The PVS evaluation environment is a read-eval-print loop that reads expressions from the
user, converts them to Common Lisp expressions, evaluates them, and returns the result. It
however cannot evaluate uninterpreted symbols. We therefore use theory interpretations [22]
to give concrete interpretations to the uninterpreted types. We use the string type to give
concrete interpretation to the variable, constant, and operator types.

The representations of the programs in the trace are ground terms i.e. do not contain
variables and uninterpreted function symbols. From Section 4, we know that transformation
primitives are defined in boolean matrix algebra. A trace being a sequence of applications of
transformation primitives is a ground term as well.
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We then use the PVS ground evaluator to check the conformance of the GCC optimization
trace with the actual optimization performed by GCC as follows: The transformations in the
trace are applied on the input program. The program thus obtained is then matched with the
optimized program generated by GCC (which is also a part of the trace). Both the programs
being ground terms, the matching is possible in the PVS ground evaluator. If the two programs
match then the trace conforms to the actual optimization performed. This step eliminates the
need to trust the instrumentation.

6.3. Checking soundness conditions

The soundness conditions of the transformation primitives are defined in the Spots/Pvs
libraries. As discussed in Section 4.3, the soundness conditions are defined using computational
tree logic with branching past (CTLbp). The temporal logic operators are defined using boolean
matrix algebra and mu-calculus. Explaining these definitions is beyond the scope of this paper.
We refer the reader to [14, 13] for formal semantics of CTLbp operators.

We model check the soundness conditions of the transformation primitives used in the trace
on the appropriate versions of the input program. The appropriate version of the input program
for an application of a transformation primitive is obtained by simulating the prefix of the trace
on the input program. If the soundness conditions of all the primitives used in the trace are
satisfied then the trace preserves semantics. Since it is also checked that the trace conforms
to the optimization performed (as explained in Section 6.2), we can deduce that the GCC
optimization also preserves semantics of the input program.

Using this scheme, we have validated several intraprocedural optimizations of Register
Transfer Level (RTL) code in GCC, namely, loop invariant code motion, partial redundancy
elimination, lazy code motion, code hoisting, and copy and constant propagation for sample
programs written in a subset of the C language.

We also use the framework to check correctness of some analysis information generated by
GCC. For instance, we check whether the loops identified by GCC in its loop optimizations
are correct with respect to a temporal logic based definition of natural loops.

7. Evaluation of the validation framework

In Section 7.1, we estimate the cost of development of the validation framework in terms of
the size of code and PVS specifications. We also discuss how the framework can be extended
to other compiler infrastructures and identify the trusted code base of the framework. In
Section 7.2, we analyze complexity of the validation approach. We also analyze complexity of
the present implementation and evaluate its performance.

7.1. Development cost, extensibility, and trusted code base

Development cost. For estimating the cost of development of the validation framework, in
Figure 15 Table (a), we summarize the approximate sizes of C code, AWK scripts, and PVS
specifications that form the implementation of the validation framework.
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Functionality ≈ LOC

Instrumentation of optimizer routines (C code) 250
Trace to PVS theory (C + AWK code) 900 + 1100
Spots/Pvs libraries (PVS) 1650

Total 3900

GCC file ≈ LOC

gcse.c 6800
loop.c 5000
rtlanal.c 100

Total 11900
(a) Validation framework (b) GCC code base

Figure 15. Estimated code and specification sizes

The instrumentation of the source code of GCC consists of 250 lines of C code inserted into
optimization and transformation routines. The inserted code fragments simply generate the
trace of the optimization being performed. The routines to print simplified RTL representations
of programs constitute 900 lines of C code. These are implemented by modifying the GCC
print routines for RTL (print-rtl.c) and are compiled with the GCC source to form an
instrumented GCC executable. A trace of an optimization is converted into a PVS theory. The
conversion is implemented as AWK scripts and also includes the heuristics for generation of
equivalent traces (ref. Section 6.1). The AWK scripts constitute 1100 lines of code.

The functions used in the PVS theory corresponding to a trace are provided as part of the
Spots/Pvs libraries. The libraries include definitions of boolean matrix operations, temporal
logic operators, transformation primitives, and soundness conditions. Together these definitions
constitute 1650 lines of PVS specifications.

Figure 15 Table (b) summarizes the sizes of GCC optimization implementations being
validated. For the file gcse.c, we consider the optimization routines hoise code, pre gcse,
and cprop. These routines along with the corresponding program analyses constitute most of
the code of gcse.c which is 6800 lines. For the file loop.c, we consider only move movables

optimization. The other optimizations, namely, induction variable elimination and strength
reduction are not considered presently. We therefore conservatively estimate the relevant
code size as 5000 lines (out of 11900 lines of loop.c). The replace regs transformation in
rtlanal.c is used in copy propagation. Thus the total size of the GCC code base (including
comments) covered by the validation framework is approximately 11900 lines of code.

The instrumentation thus adds around 21 lines per 1000 lines of GCC implementation. The
code size for conversion from traces to PVS theories is proportional to the complexity of the
RTL representation. The validation framework requires less than 140 lines of PVS specification
per 1000 lines of GCC implementation. Out of the total PVS specifications, around 500 lines are
required to define boolean matrix operations and temporal logic operators. These are standard
definitions but are not encoded in the predefined PVS prelude theories. The specifications of
transformation primitives and their soundness conditions which are specific to our framework
constitute around 100 lines per 1000 lines of GCC implementation.

Extensibility. We have already defined a comprehensive set of primitive graph
transformations. Graph transformations like node splitting and node merging can be useful
in defining optimizations like loop unrolling, splitting, and merging. Thus the validation
framework can be extended by adding other primitive program transformations.
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To extend the framework, some familiarity with PVS would be required. Note that the
process of validation itself does not involve theorem proving. However, typechecking in PVS
is not decidable and therefore it may be required to use the prover in order to discharge some
type correctness conditions (TCCs).

The only part of the validation framework that is dependent on GCC is the instrumentation
code and the conversion of traces to PVS theories. The PVS specifications themselves are
completely independent from the GCC implementation. To use the framework with another
compiler infrastructure, one therefore needs to instrument the compiler and convert the traces
to PVS theories which requires processing the intermediate representation of the compiler.

Trusted code base. The trusted code base (TCB) for a software system is the code on which
correctness of the system depends and is distinguished from a much larger code that can be
incorrect without affecting correctness of the system (cf. [18]). It is therefore desirable to keep
such a code base as small as possible. We now identify the TCB for the validation framework.

Since we check conformance of the trace generated by the instrumented optimizer with
the actual optimization, we eliminate the need to trust the instrumentation. Further, the
instrumentation being merely print statements is safe and side-effect free. It is also important
to note that the primitives are not some reference implementations but are formal definitions.
Thus, in order to consider the validation scheme sound, it is not required to implicitly trust
the definitions developed by us, as it is possible to argue about their correctness formally. We
have also given boolean matrix algebraic semantics to CTLbp operators and we use the PVS
ground evaluator for model checking the soundness conditions.

The TCB consists of only the following components: (1) The functions that convert the RTL
representation to PVS theories and (2) the PVS ground evaluator. The conversion routines are
syntax-directed translators and in general, it is possible to develop enough confidence in them
with repeated use or testing. The PVS ground evaluator is part the PVS system which has
been used extensively in practice for long and hence qualifies to be called a trusted framework.

7.2. Complexity and performance

The RTL intermediate representation of a program is maintained as a linked list (ref.
Section 5.1). The generation of PVS representation for input and optimized programs is
possible with a traversal of the list and is thus linear in the size of the program.

The algorithmic technique used for validation is temporal logic model checking. The
complexity of model checking computational tree logic (CTL) formulae is linear in both the
length of the formula and the size of the Kripke structure [5, 6]. We use a variant of CTL
called CTL with branching past (CTLbp). The algorithm for model checking CTLbp formulae
is a simple extension of CTL model checking and is also bilinear [16].

The control flow graph of a program is represented as a boolean adjacency matrix. The
temporal logic operators and the transformation primitives are defined in boolean matrix
algebra and are evaluated using the PVS ground evaluator. These operations involve matrix
multiplication. The transformations which do not change the control flow graph take time
only linear in the program size whereas the transformations with structural changes are cubic
in the program size (due to matrix multiplication). Thus the (worst-case) complexity of the
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#rtx gcc -O1 gcc -O2 / gcc -O3 gcc -Os

OPT K CC MC OPT K CC MC OPT K CC MC

31 – – – – cprop 4 0.001 0.07 cprop,hoist 12 0.13 0.59
31 – – – – pre 9 0.090 0.46 hoist 8 0.09 0.38
35 licm 6 0.04 0.07 sink 4 0.020 0.03 – – – –
48 licm 10 0.23 0.60 pre 15 0.400 1.36 hoist 8 0.20 0.70
80 licm 8 0.19 0.62 licm 11 1.430 4.14 – – – –

Figure 16. Experimental results

conformance checking between the trace and the actual optimization is cubic in the size of
the program and linear in the length of the trace. Due to use of matrix multiplication, the
complexity of model checking in the PVS based evaluation framework is also cubic in the size
of the program and linear in the length of the formula.

Figure 16 summarizes experimental results for validation runs on some sample programs.
The column #rtx denotes the number of RTL instructions in the respective programs. The
programs are compiled with all optimization settings of GCC, namely, O1, O2, O3, and Os

as shown in the subsequent columns. The optimization flags O2 and O3 resulted in similar
traces and hence are combined together. For each optimization setting, four columns: OPT,
K, CC, and MC are shown. OPT denotes which optimization was applied by GCC. licm,
cprop, pre, sink, and hoist respectively denote loop invariant code motion, copy propagation,
partial redundancy elimination, code sinking, and code hoisting optimizations.

The column K denotes the number of primitive transformation steps in the generated trace.
The columns CC and MC report the run-time in seconds for conformance checking of the trace
and for model checking soundness conditions, respectively. The typical compilation time by
GCC for various optimization settings is in the range of 0.01–0.04 seconds. The run-time is
measured on Intel CPU 6600, 2.40GHz, running a Linux distribution.

The optimizer implementations covered during validation are:

• loop invariant code motion (loop.c/move movables),
• partial redundancy elimination (PRE) or global common subexpression elimination

(GCSE) through lazy code motion (gcse.c/pre gcse),
• PRE/GCSE through code hoisting (gcse.c/hoist code), and
• copy and constant propagation (gcse.c/cprop).

A small number of transformation primitives were enough to cover the generated traces. The
traces generated by these 4 optimizer routines were expressible as compositions of only 7
transformation primitives defined by us (ref. Section 4).

The present implementations of conformance checking and model checking are
straightforward ground evaluations of the declarative definitions of transformation primitives
and temporal logic operators. The PVS ground evaluation environment is a read-eval-print
loop that reads expressions from user, converts them to Common Lisp expressions, evaluates
them, and returns the results. Though this provides a convenient framework for simulating
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specifications, is not very efficient. We expect the present implementation to scale to programs
up to several hundred RTXs and traces of a few hundred transformation steps.

In our future work, we plan to consider the following directions to improve scalability of the
framework to large programs and traces:

• Efficient implementation of a CTLbp model checker. Note that the actual complexity of
model checking is only linear in the program size and hence an optimal implementation
of the algorithm should easily scale to programs with several thousand RTXs. A formal
correctness proof of the algorithm can be derived in PVS.

• The present implementation translates only a subset of RTL representation to PVS
theories. To handle large programs, a comprehensive syntax-directed translator from
RTL to PVS should be developed.

8. Related Work

Temporal logic has been used for expressing data flow analyses [27, 26]. Several techniques for
specification and verification of optimizations [17, 19] use temporal logic to specify analyses
and combine them with rewriting based specifications of program transformations.

The notion of transformation primitives and soundness conditions is suitable for both
verification and validation of optimizations. Our earlier specifications in [15] are intended for
verification and though equally expressive, are not executable. In [14] we proposed constructive
definitions of transformation primitives using boolean matrix algebra and used them in
simulation and verification of optimization specifications. In this paper, we have demonstrated
that when combined with a trace generation mechanism, the framework of transformation
primitives can be used for translation validation of realistic compilers like GCC.

The translation validation approach of Necula [21] tries to discover simulation relations
between the input and the optimized programs using some heuristic matching on the respective
control flow graphs. Semantic equivalence is then proved by using symbolic evaluation
and constraint solving. Some approaches [29, 4] instead require a compiler to generate
program annotations as an aid in determining simulation relations. This however may require
considerable instrumentation of compiler. In our framework, the compiler is required only
to produce traces of optimization runs. As we have discussed in Section 7.1, the cost of
instrumentation in our framework is therefore very small.

Goldberg et al. [10] present a proof rule for reasoning about loop optimizations. They develop
heuristics to determine which optimizations occurred and synthesize intermediate versions of
the input program which may not have been generated by the compiler. While this is similar to
our idea of transforming a program step-by-step to get the optimized version of the program,
the technique for establishing semantic equivalence is different. The approach by Goldberg
et al. uses theorem proving techniques to discharge verification conditions generated by the
validation framework. In our framework, the verification conditions are captured by predefined
soundness conditions. The validation technique in our approach is therefore temporal logic
model checking which is easier and more amenable to automation.
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Credible compilers [25] and proof-generating compilers [24] are schemes where compilers
themselves generate soundness proofs for each run which are checked by an external proof
checker. These approaches expect a lot of work on the part of compilers and also require
extensive instrumentation of compilers for this.

The Verifix project [9, 11] proposes use of program checking to ensure correctness of compiler
implementations. It checks whether output produced by the compiler meets certain conditions.
They have applied it to check front-end implementations. Glesner [8, 7] has introduced the
concept of program checking with certificates and has applied it to code selection algorithms.
A bottom-up rewrite system specifies valid translations between intermediate code trees and
target (machine) code patterns. Given a certificate (sequence of rewrites used by the compiler),
the approach recomputes the output independently using the certificate and matches it with
compiler’s output. This ensures that only valid translations (as specified by the rewrite system)
are applied. The traces in our framework can be seen as certificates. However, independent
recomputation of the output using the trace only guarantees that the trace is correct but not
semantics preserving. In order to prove semantics preservation, we require an additional step
which involves model checking soundness conditions of the transformations used in the trace.
The use of model checking for translation validation is unique to our approach.

Register allocation is an important back-end activity in a compiler. Huang et al. [12] propose
a static analysis for checking correctness of the register allocation phase. The approach involves
deriving a mapping between registers in the output program and program variables in the
input program. The verification step checks whether the def-use chains in the input program
are preserved correctly in the output program for corresponding register allocations.

A complementary approach to verification or validation of optimizing compilers is that of
a correct-by-construction mechanism. Leroy [20] presents design of a certified compiler from
a subset of the C language to the PowerPC assembly language. The approach uses the Coq
theorem prover as a verification and development tool.

As the translation validation frameworks become more practical and exhaustive, the question
about correctness of compilers shifts to that of validators themselves. This problem can be
tackled by carefully selecting and evaluating the trusted code base of the framework which in
our case is the PVS ground evaluator. However, more generally, formal proofs of correctness
for validators themselves may be derived. Tristan et al. [28] present formal proofs for validators
designed for instruction scheduling optimizations using the Coq theorem prover.

9. Conclusions

We have developed a novel framework for translation validation of GCC optimizers. An
optimizer is instrumented to generate a trace of its execution in terms of predefined
transformation primitives. If a generated trace conforms to the optimization performed and if
the soundness conditions of the primitives used in the trace are satisfied then the optimizer
also preserves semantics. The soundness conditions are based on well understood classical
data flow analyses and are expressed in a temporal logic. The proof of semantics preservation
for a primitive is derived a priori and only once whereas the primitive is used in many
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optimizations. This simplifies the run-time validation of optimizations. We have validated
several intraprocedural bit-vector analysis based optimizations in GCC.

The cost of development of the framework is estimated in terms of code and specification
sizes. The instrumentation adds around 21 lines of C code for every 1000 lines of GCC code
base considered for validation. The PVS based specifications of transformation primitives and
soundness conditions constitute 140 lines for every 1000 lines of GCC code. Thus the cost
of development of the framework is reasonable. In particular, the instrumentation is easily
achievable even for a complex and large compiler infrastructure like GCC.

In future, we would like to extend the validation framework to SSA-based optimizations. The
register allocation and code generation phases of GCC also employ syntactic transformations
of programs. It would be interesting to explore whether these transformations can be expressed
using primitive transformations and whether soundness conditions for them can be formulated.

In the present implementation, the model checking algorithm is implemented by
straightforward ground evaluation in PVS. We plan to implement an efficient model checker
in future. A more comprehensive treatment of RTL representation should allow us to achieve
scalability to large programs. Presently, the conformance checking is implemented as exact
matching between the output obtained by simulation of the trace on the input program
and the optimized program generated by the compiler. This can be relaxed to reduce false
negatives generated due to mere syntactic mismatch. We have also defined many types of
graph transformations like node splitting and merging. These can possibly be used to specify
more complex control flow transformations like loop unrolling, merging, and peeling.
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