
Appendix D

SPOTS System Guide

D.1 Installation and User Guide

The SPOTS/PVS framework is based on the PVS system. In our setup, we have used

PVS v3.2 which is available at [5]. PVS uses GNU Emacs an interface. PVS Lisp runs as

an inferior lisp to Emacs Lisp. In the implementation of the verification conditions generator

(VCGEN), we use interprocess communication between Emacs Lisp andPVS Lisp. In our

setup, we have used GNU Emacs v21.2.1 which is available at [4]. The source of the SPOTS

system is available at [1]. Below we outline the installation of the system.

Installation of the SPOTS/PVS system

(1) Download and install PVS v3.2 (or later).

(2) Download and untar/unzipspotspvs.tgz in a suitable directory. It containsTTL,

OVerification, andspecifications directories.TTL andOVerification direc-

tories contain PVS theories described in Section 9.1.specifications directory con-

tains specifications of several optimizations viz. common subexpression elimination

(cse), dead code elimination (dce), partial dead code elimination (pdce), lazy code

motion (lcm), loop invariant code motion (licm), optimal code placement (ocp). It

also contains a directory (testsuite) containing some test cases specified as PVS

theories for validation of optimization specifications.

(3) Invoke PVS inTTL directory. Parse and typecheck all the theories in the directory.

(4) Change the context toOVerification directory using a PVS commandchange-

context. The theories inOVerification directory use concepts defined inTTL

218



CHAPTER D.SPOTS System Guide 219

directory. We therefore import the theories inTTL directory by a PVS command

load-prelude-library. The details about all PVS commands are available at [64].

(5) Parse and typecheck all theories inOVerification directory.

(6) Perform the following steps for each of the sub-directories inspecifications direc-

tory: Change the context to a directory containing an optimization specification. Im-

port the theories inOVerification directory using PVS commandload-prelude-

library. Parse and typecheck the theories in the directory.

(7) Change the context totestsuite directory. Import the theories in each of the opti-

mization specifications. Parse and typecheck the theories in the directory.

Using the SPOTS/PVS system

The verification conditions for an optimization specification can be generated by in-

voking vcgen from the PVS Emacs interface. However, as mentioned in Section 9.2, the

present implementation of VCGEN does not handle all the PVS language features. Proofs

of the verification conditions can be derived using the PVS proof checker. For some spec-

ifications, supporting lemmas (<opt> lemmas.pvs) and proofs are also provided with the

system which can simply be checked in PVS.

An optimization specification can be validated on tests encoded as PVS theories in

testsuite directory as follows:

(1) Parse and typecheck a test theory.

(2) Invoke the PVS ground evaluator in the context of the theory.

(3) Evaluate analysis or transformation functions defined as part of the specification on

the program with appropriate arguments in the ground evaluator to check their results.

(4) Check verification conditions for the specification in the ground evaluator. The veri-

fication conditions should evaluate totrue.
Installation of the SPOTS/GCC system

(1) Install the SPOTS/PVS system as described earlier.



SECTION D.1. Installation and User Guide 220

(2) Download and untar/unzip GCC v4.1.0 source from [3]. Letsrcdir denote the base

directory of GCC source.

(3) Download and untar/unzip spotsgcc.tgz from [1]. Letspotsgcc denote the base di-

rectory. It containsgcc-4.1.0, scripts, andtests directories. gcc-4.1.0 di-

rectory contains instrumented GCC source files.scripts directory contains AWK

scripts for processing traces generated by the instrumented GCC as described in Chap-

ter 10.tests directory contains test cases for validation of GCC.

(4) CopyMakefile.in andprint-spots-rtl.c files from spotsgcc/gcc-4.1.0 to

srcdir directory.

(5) Create an installation directory for GCC, saybuilddir. Go tobuilddir directory

and configure GCC installation assrcdir/configure --enable-languages=c.

Make the GCC source by invoking commandmake. The resulting GCC compiler is a

compiler for the C language and is not instrumented.

(6) Copy the instrumented GCC source files fromspotsgcc/gcc-4.1.0 directory to

srcdir.

(7) Invokemake in builddir. The resulting compiler is the required instrumented ver-

sion of GCC.

Using the SPOTS/GCC system

(1) Go tospotsgcc/tests directory.

(2) Compile a test C program using the instrumented GCC as follows:

builddir/gcc/cc1 -O1 test.c

It generates atest.c.spots file. In place ofO1, optimization flags viz.O2, O3, and

Os can also be used.

(3) Generate a PVS file for the SPOTS/GCC file as follows:

awk -f spotsgcc/scripts/spots-heuristics.awk

-f spotsgcc/scripts/spots-pvs.awk test.c.spots > test.c.pvs



CHAPTER D.SPOTS System Guide 221

(4) Generate a DOT file for the SPOTS/GCC file as follows:

awk -f spotsgcc/scripts/spots-heuristics.awk

-f spotsgcc/scripts/spots-dot.awk test.c.spots > test.c.dot

Generate a PS file from the DOT file for visualization:

dot -Tps test.c.dot > test.c.ps

(5) Invoke PVS and import the PVS theories fromOVerification directory using PVS

commandload-prelude-library.

(6) Parse and typechecktest.c.pvs. Use the PVS ground evaluator to validate the GCC

optimization. In order to check whether loops detected by GCC in loop optimizations

are correct (Section 10.5), importspecifications/licm directory which contains a

formal definition of a loop.


