Appendix D

SPOTS System Guide

D.1 Installation and User Guide

The SP0T9Pvs framework is based on the PVS system. In our setup, we hawk use
PVS v3.2 which is available at [5]. PVS uses GNU Emacs anfater PVS Lisp runs as
an inferior lisp to Emacs Lisp. In the implementation of tlegification conditions generator
(VCGEN), we use interprocess communication between Emacs Lisp®i&iLisp. In our
setup, we have used GNU Emacs v21.2.1 which is availablg.afi¢ source of the S0TS
system is available at [1]. Below we outline the installatad the system.

I nstallation of the SPOTS/Pvs system
(1) Download and install PVS v3.2 (or later).

(2) Download and untar/unzippot spvs. t gz in a suitable directory. It containEIL,
OVerification, andspecifications directories.TTL andOVeri fi cati on direc-
tories contain PVS theories described in Section §kci f i cat i ons directory con-
tains specifications of several optimizations viz. commuaipexpression elimination
(cse), dead code eliminatiord¢e), partial dead code eliminatiopdce), lazy code
motion (cm), loop invariant code motion { cn), optimal code placemenbgp). It
also contains a directory €st sui t) containing some test cases specified as PVS
theories for validation of optimization specifications.

(3) Invoke PVS inTTL directory. Parse and typecheck all the theories in the ttirgc

(4) Change the context tOVerification directory using a PVS commanthange-
context. The theories irOVerification directory use concepts defined TiL

218

CHAPTER D.SPOTSs System Guide 219

directory. We therefore import the theories TiL directory by a PVS command
| oad- prel ude-1ibrary. The details about all PVS commands are available at [64].

(5) Parse and typecheck all theoriever i fi cati on directory.

(6) Perform the following steps for each of the sub-direée®mspeci fi cat i ons direc-
tory: Change the context to a directory containing an oation specification. Im-
port the theories iVer i f i cat i on directory using PVS commanaad- pr el ude-

|'i brary. Parse and typecheck the theories in the directory.

(7) Change the context tcest sui t e directory. Import the theories in each of the opti-

mization specifications. Parse and typecheck the thearig®idirectory.

Using the SPOTS/PV S system

The verification conditions for an optimization specifioatican be generated by in-
voking vcgen from the PVS Emacs interface. However, as mentioned in @e&i2, the
present implementation of @EN does not handle all the PVS language features. Proofs
of the verification conditions can be derived using the PVi@&pchecker. For some spec-
ifications, supporting lemmasdpt >_| emmas. pvs) and proofs are also provided with the
system which can simply be checked in PVS.

An optimization specification can be validated on tests dadoas PVS theories in
t est sui t e directory as follows:

(1) Parse and typecheck a test theory.
(2) Invoke the PVS ground evaluator in the context of the theo

(3) Evaluate analysis or transformation functions definegart of the specification on

the program with appropriate arguments in the ground etaitia check their results.

(4) Check verification conditions for the specification ie tround evaluator. The veri-
fication conditions should evaluatetiae.

I nstallation of the SPOTs/Gcc system

(1) Install the $oTIPVS system as described earlier.

SECTION D.1. Installation and User Guide 220

(2) Download and untar/unzip GCC v4.1.0 source from [3]. 4retdi r denote the base
directory of GCC source.

(3) Download and untar/unzip spotsgcc.tgz from [1]. kpdt sgcc denote the base di-
rectory. It containgycc-4. 1.0, scripts, andtests directories. gcc-4. 1. 0 di-
rectory contains instrumented GCC source filesri pt s directory contains AWK
scripts for processing traces generated by the instrurdé&@C as described in Chap-

ter 10.t est s directory contains test cases for validation of GCC.

(4) CopyMakefile.inandprint-spots-rtl.c files fromspotsgcc/gce-4.1.0to

srcdir directory.

(5) Create an installation directory for GCC, dayi | ddi r. Go tobui | ddi r directory
and configure GCC installation ascdi r/ confi gure --enabl e-| anguages=c.
Make the GCC source by invoking commamake. The resulting GCC compiler is a

compiler for the C language and is not instrumented.

(6) Copy the instrumented GCC source files frapot sgcc/ gce-4. 1. 0 directory to

srcdir.

(7) Invokeneke in bui | ddi r. The resulting compiler is the required instrumented ver-
sion of GCC.

Using the SPoTs/Gcc system

(1) Go tospotsgcce/ tests directory.

(2) Compile a test C program using the instrumented GCC #&mAfsl
buil ddir/gcc/ccl -OL test.c
It generates &est . c. spot s file. In place ofOL, optimization flags vizQ2, @3, and

Gs can also be used.

(3) Generate a PVS file for thee®T19Gcc file as follows:
awk -f spotsgcc/scripts/spots-heuristics. awk

-f spotsgcc/scripts/spots-pvs.awk test.c.spots > test.c.pvs

CHAPTER D.SPOTSs System Guide 221

(4) Generate a DOT file for theP®T9dGcCC file as follows:
awk -f spotsgcc/scripts/spots-heuristics.awk
-f spotsgcc/scripts/spots-dot.awk test.c.spots > test.c. dot
Generate a PS file from the DOT file for visualization:

dot -Tps test.c.dot > test.c.ps

(5) Invoke PVS and import the PVS theories fr@veri f i cati on directory using PVS
command oad- prel ude-library.

(6) Parse and typechetkst . c. pvs. Use the PVS ground evaluator to validate the GCC
optimization. In order to check whether loops detected byoGCloop optimizations
are correct (Section 10.5), impapeci fi cati ons/ | i cmdirectory which contains a

formal definition of a loop.

